Data Sheet ### FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output The DK Series of non-isolated dc-dc converters provide high efficiency, cost effective, and complete Point-of-Load power solutions in very small and low profile SMD packages. Occupying a footprint of less than 2 cm² (0.3 in²), these are the converters of choice for a wide range of telecommunications, data communications, computing, industrial and consumer applications where board space, cost, height, efficiency, and reliable operation in elevated temperature environments are critical. 非絶縁型DC/DCコンパータの**DK**シリースは、高効率、低価格、小型・低背のSMDパッケーシで完全なPOL電源ソリューションを提供します。実装面積が2cm² (0.3 in²) 以下のこのコンパータは、基板スペース、費用、高さ、効率、及び高温環境での信頼性のある動作が重要な広範囲の電気通信、データ通信、コンピュータ、産業及びコンシューマ向けのアプリケーションに最適です。 The **FPDK05SR8003PS*** converter of the Series operates from a 3.0Vdc to 5.5Vdc input, and delivers 3A of output current at a tightly regulated programmable output voltage of 0.8Vdc to 3.465Vdc. The thermal performance of the **FPDK05SR8003PS*** is best-in-class: No derating is needed up to 85°C, under natural convection. **PK** シリース の **FPDK05SR8003PS*** は3.0V ~ 5.5V 入力で動作し、高い電圧精度でプログラム可能な出力電圧0.8V ~ 3.465Vdcで、3Aの出力電流を供給します。**FPDK05SR8003PS*** の温度特性はクラス最高レヘルです。自然対流で85 まで出力電流ディレーティングを必要としません。 The leading edge performance of the DK Series products, and their extremely high quality and reliability are achieved through advanced circuit and thermal design techniques and FDK's state of the art in-house manufacturing processes and systems. ### **Applications** - Telecommunications - Routers, Base Stations, Wireless テレコムシステム (ルータ、基地局、無線) - Data Communications - Internet Routers, Processors データ通信 (インターネットルータ、プロセッサ) - Computing - Servers, Workstations コンピュータ関係 (サーバー、ワークステーション) - Industrial and Consumer - Navigation, POS systems, Office Equipment - Entertainment 産業及びコンシューマ向け (ナピケーション、ポスシステム、オフィス機器、エンターテインメント) FPDK05SR8003PS* #### **Features** - RoHS compliant RoHS準拠 - Delivers up to 3A (10.4W) 3A (10.4W)まで供給可能 - High efficiency, no heatsink required 高効率-放熱器が不要 - No derating up to 85 85 までディレーティング 不要 - Small size and low profile:0.657" x 0.402" x 0.134" 小型、低背 (16.7 x 10.2 x 3.4mm) - Programmable output voltage via external resistor 外部接続の抵抗によりプログラム可能な出力電圧 - No minimum load required 最小負荷は不要 - Start up into pre-biased output 出力にプリバイアスがあっても起動可能 - Remote ON/OFF リモートON/OFF機能 - Auto-reset output over-current protection 過電流保護機能: 自動復帰 - Auto-reset output over-temperature protection 内部過熱保護機能 - Power Good Signal パワーケッド信号出力 - High reliability, MTBF = 1 Million Hours 高信頼性: MTBF = 1 Million Hours - UL60950 recognition in U.S. & Canada, and CB Scheme certification per IEC/EN60950 (pending) UL60950, CB Scheme (準拠) - All materials meet UL94, V-0 flammability rating 全ての部品は UL94 V-0に適合 ## FPDK05SR8003PS* **Data Sheet** 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output ### Electrical Specifications 電気的仕様 All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted. 注記が無い場合、全ての仕様は指定された入力電圧、負荷、温度範囲で適用されます。 Conditions: Ta=25degC, Airflow=50LFM (0.25m/s), Vin=5.0Vdc, unless otherwise specified. | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |---|--|---------------|-----|-------|-------| | ABSOLUTE MAXIMUM RATINGS ¹ | | | | | | | Input Voltage | | -0.3 | | 6.0 | Vdc | | Operating Temperature | See page 8 | -40 | | 85 | °C | | Storage Temperature | | -55 | | 125 | °C | | Output Voltage | | 0.8 | | 3.465 | Vdc | | Power Good Voltage | | -0.3 | | 5.0 | Vdc | | Power Good Sink Current | | | | 5.0 | mA | | Track Pin Voltage (PSS type only) | For non-sequenced operation | 0.85 | | 5.0 | Vdc | | Moisture Sensitivity Level | | JEDEC Level 2 | | | | | FEATURE CHARACTERISTICS | | | | | | | Switching Frequency | | | 600 | | kHz | | Output Voltage Programming Range | age Programming Range See page6. Output Voltage Adjust 0.8 | | | 3.465 | Vdc | | Turn-On Delay Time | Full resistive load | | | | | | with Vin (module enabled, then Vin applied) | From Vin=Vin(min) to 0.1*Vout(nom) | | 3.0 | | ms | | with Enable (Vin applied, then enabled) | From enable to 0.1*Vout(nom) | | 3.0 | | ms | | Rise Time (Full resistive load) | From 0.1*Vout(nom) to 0.9*Vout(nom) | | 3.0 | | ms | | Remote Control (Positive Logic) | | | | | | | Module Off | | -0.2 | | 0.4 | Vdc | | Module On | | 1.3 | | Vin | Vdc | | Power Good | Set point for power good output high | 82 | 88 | 93 | %Vout | | Power Good Output Low | I _{PGOOD} =5mA | | | 0.5 | V | | Power Good Leakage Current | | | | 10 | uA | | Tracking Delay Time (PSS type only) | Delay from Vin,ผเห to application of tracking voltage | 10 | | | ms | #### Stresses in excess of the absolute maximum ratings may lead to degradation in performance and reliability of the converter and may result in permanent damage. 絶対最大定格を超えたストレスは、性能の低下、信頼性の低下、及びモシュールの破損を引き起こすことがあります。 # FPDK05SR8003PS* **Data Sheet** 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output Conditions: Ta=25degC, Airflow=50LFM (0.25m/s), Vin=5.0Vdc, unless otherwise specified. | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |--|--------------------------------|------|-----|-----|-------| | INPUT CHARACTERISTICS | | | | | | | Operating Input Voltage Range | Vout 2.0Vdc | 3.0 | 5.0 | 5.5 | Vdc | | | 2.0Vdc < Vout 2.75Vdc | 4.3 | 5.0 | 5.5 | Vdc | | | 2.75Vdc < Vout | 4.75 | 5.0 | 5.5 | Vdc | | Input Under Voltage Lockout | | | | | | | Turn-On Threshold | | 2.2 | 2.4 | 2.8 | Vdc | | Turn-Off Threshold | | 1.7 | 2.0 | 2.4 | Vdc | | Maximum Input Current | 3Aout at Vin-min | | | | | | | Vout=3.465V | | | 2.5 | Adc | | | Vout=3.3V | | | 2.4 | Adc | | | Vout=2.5V | | | 2.1 | Adc | | | Vout=1.8V | | | 2.2 | Adc | | | Vout=1.5V | | | 1.9 | Adc | | | Vout=1.2V | | | 1.6 | Adc | | | Vout=1.0V | | | 1.4 | Adc | | | Vout=0.8V | | | 1.2 | Adc | | Input Stand-by Current (module disabled) | | | 1.5 | | mA | | Input No Load Current | Vout=3.465V | | 50 | | mA | | | Vout=3.3V | | 50 | | mA | | | Vout=2.5V | | 50 | | mA | | | Vout=1.8V | | 45 | | mA | | | Vout=1.5V | | 40 | | mA | | | Vout=1.2V | | 40 | | mA | | | Vout=1.0V | | 35 | | mA | | | Vout=0.8V | | 35 | | mA | | Input Reflected-Ripple Current | See Fig.J for setup (BW=20MHz) | | | | | | | Vout=3.465V | | 10 | | mAp-p | | | Vout=3.3V | | 10 | | mAp-p | | | Vout=2.5V | | 10 | | mAp-p | | | Vout=1.8V | | 10 | | mAp-p | | | Vout=1.5V | | 10 | | mAp-p | | | Vout=1.2V | | 10 | | mAp-p | | | Vout=1.0V | | 5 | | mAp-p | | | Vout=0.8V | | 5 | | mAp-p | # **Data Sheet** # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output Conditions: Ta=25degC, Airflow=50LFM (0.25m/s), Vin=5.0Vdc, unless otherwise specified. | PARAMETER | NOTES | MIN | TYP | MAX | UNITS | |--|--------------------------------|------|---------|------|-------| | OUTPUT CHARACTERISTICS | | | | | | | Output Voltage Set Point (no load) | | -2.5 | | +2.5 | %Vout | | Output Regulation | | | | | | | Over Line | Full resistive load | | +/- 0.1 | | %Vout | | Over Load | From no load to full load | | +/- 0.3 | | %Vout | | Output Voltage Range
(Over all operating input voltage, resistive load
and temperature conditions until end of life) | Output Ripple is not included. | -3.0 | | +3.0 | %Vout | | Output Ripple and Noise BW=20MHz | See Fig.H for setup (BW=20MHz) | | | | | | | Vout=3.465V | | 30 | 45 | mVp-p | | | Vout=3.3V | | 30 | 45 | mVp-p | | | Vout=2.5V | | 30 | 45 | mVp-p | | | Vout=1.8V | | 25 | 40 | mVp-p | | | Vout=1.5V | | 20 | 30 | mVp-p | | | Vout=1.2V | | 20 | 30 | mVp-p | | | Vout=1.0V | | 20 | 30 | mVp-p | | | Vout=0.8V | | 20 | 30 | mVp-p | | External Load Capacitance | Ceramic Capacitor | 10 | | 1000 | uF | | | Min ESR > 10m | | | 2000 | uF | | Output Current Range | | 0 | | 3.0 | Α | | Output Current Limit Inception (lout) | | | 200 | | % | | Output Short-Circuit Current | Short=10mΩ, Vout=3.3Vdc set | | 0.6 | | Arms | | DYNAMIC RESPONSE | See Fig.H for setup (BW=20MHz) | | | | | | lout step from 1.5A to 3A with di/dt=5A/us | Vout=3.465Vdc | | 140 | | mV | | | Vout=0.8Vdc | | 100 | | mV | | Settling time (to within 10% of Vout) | Vout=3.465Vdc | | 60 | | us | | | Vout=0.8Vdc | | 20 | | us | | lout step from 3A to 1.5A with di/dt=-5A/us | Vout=3.465Vdc | | 140 | | mV | | | Vout=0.8Vdc | | 100 | | mV | | Settling time (to within 10% of Vout) | Vout=3.465Vdc | | 60 | | us | | | Vout=0.8Vdc | | 20 | | us | | EFFICIENCY | Full load (3A) | | | | | | | Vout=3.465V | | 93.0 | | % | | | Vout=3.3V | | 92.5 | | % | | | Vout=2.5V | | 90.5 | | % | | | Vout=1.8V | | 88.0 | | % | | | Vout=1.5V | | 86.5 | | % | | | Vout=1.2V | | 84.0 | | % | | | Vout=1.0V | | 81.5 | | % | | | Vout=0.8V | | 78.5 | | % | ## **Data Sheet** ### FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output ### Operation #### Input and Output Impedance The **FPDK05SR8003PS*** converter should be connected to a DC power source using a low impedance input line. In order to counteract the possible effect of input line inductance on the stability of the converter, the use of decoupling capacitors placed in close proximity to the converter input pins is recommended. This will ensure stability of the converter and reduce input ripple voltage. Although low ESR Tantalum or other capacitors should typically be adequate, very low ESR capacitors (ceramic, over $47\mu\text{F}$) are recommended to minimize input ripple voltage. The converter itself has on-board internal input capacitance of 6uF with very low ESR (ceramic). FPDK05SR8003PS*と入力電源間は低インピーダンスで接続してください。コンパータの安定性に影響のある入力インダクタンスを抑えるため、コンパータの入力ピンの近傍にデカッグリングコンデンサを付加することをお勧めします。これによりコンパータの安定動作を確実にし、入力リップル電圧を抑制します。低ESRタンタル、又はその他のコンデンサも一般的には問題ありませんが、入力リップルを最小にするためには、非常に低ESRコンデンサ(セラミックで47μF以上)を推奨します。コンパータ自身は入力回路に極低ESRの6uFセラミック入力コンデンサを搭載しています。 The **FPDK05SR8003PS*** is capable of stable operation with no external capacitance on the output. To minimize output ripple voltage, the use of very low ESR ceramic capacitors is recommended. These capacitors should be placed in close proximity to the load to improve transient performance and to decrease output voltage ripple. FPDK05SR8003PS*は出力に外付けコンデンサが無い状態でも安定して動作します。出力リップルを最小にするため、極低ESRのセラミックコンデンサの接続を推奨します。過渡時の特性向上と出力リップル低減のために負荷の近傍に極低ESRセラミックコンデンサを実装することをお勧めします。 Note that the converter does not have a SENSE pin to counteract voltage drops between the output pins and the load. The impedance of the line from the converter output to the load should thus be kept as low as possible to maintain good load regulation. このコンバータは出力端子と負荷間の電圧ドロップを補正するセンス端子を設けていません。精度の高い負荷特性を保持するために、コンバータの出力から負荷までのラインインビーダンスは可能な限り低くしてください。 #### REMOTE (Pin 3) The REMOTE pin (Pin 3) can be used to turn the converter on or off remotely using a signal that is referenced to GND (Pin 2 or 7). A typical configuration for remote ON/OFF is shown in Fig. A. リモート端子(3番ピン)はGND(2又は7番ピン)を基準としたリモート信号によりコンパータをON/OFFするのに使用できます。一般的なリモートON/OFF回路を図-Aに示します。 The **FPDK05SR8003PS*** turns on when the REMOTE pin is at logic high (open) and turns off when it is at logic low. When the REMOTE pin is left open, the converter is on. Voltage ranges for logic high/low are provided in the Electrical Specifications section. FPDK05SR8003PS*はリモート端子が論理的にHigh (open)で動作し、論理的にLowで停止します。 リモート端子が未接続 (オープン)の場合、コンパータはONします。 論理的High/Lowの電圧範囲は電気的特性を参照してください。 The REMOTE pin (pin3) is internally pulled-up to Vin. An open collector (open -drain) transistor can be used to drive the REMOTE pin (pin3). The device driving the REMOTE pin (pin3) must be capable of sinking up to 0.3mA at low logic level. リモート端子(3番ピン) はモジュール内部でVinにプルアップされています。 リモート端子(3番ピン)の操作にはオープンコレクタ(オープントレイン) のトランジスタが使用可能です。 リモート端子(3番ピン)を操作するデルイスにはLowレベルで0.3mAのシンク能力が必要です。 Fig. A: A typical configuration for remote ON/OFF #### Power Good (Pin 6) The Power Good Signal is an open-drain output that asserts low when Vout is out of regulation. パワーグッド信号はオープンドレイン出力で、出力電圧が確定していない状態ではLowとなります。 ### **Data Sheet** ### FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output #### Output Voltage Adjust/TRIM (Pin 5) The output voltage of the **FPDK05SR8003PS*** converter can be programmed from 0.8V to 3.465V by using an external resistor **FPDK05SR8003PS***の出力電圧は外部抵抗を接続することで、0.8V ~ 3.465Vまで可変可能です。 #### **External Resistor** An external trim resistor, $R_{TRIM},$ should be connected between TRIM (pin 5) and GND (pin 2 or 7); see Fig. B. The value of $R_{TRIM},$ in $k\Omega,$ for a desired output voltage, $V_{\text{O-REQ}},$ in V, is given by: 外部抵抗 R_{TRIM}はTRIM端子(5番ピン)とGND端子(2又は7番ピン)の間に接続してください。図Bを参照。 R_{TRIM} の定数、及び必要な出力電圧は次の式により求めます。 $$R_{TRIM} = \frac{7}{(V_{O-REQ} - 0.8)} - 1$$ [k] Note that the tolerance of a trim resistor will affect the tolerance of the output voltage. Standard 1% or 0.5% resistors may suffice for most applications; however, a tighter tolerance can be obtained by using two resistors in series instead of one standard value resistor. Table 1 lists calculated values of R_{TRIM} for common output voltages. For each value of R_{TRIM} , Table 1 also shows the closest available standard resistor value. R_{TRIM} の公差は出力電圧の公差に影響します。ほとんどの使用状況においては、標準的な1%又は0.5%品の抵抗で十分です。しかしながら、より厳しい出力精度のためには、抵抗1本よりも2本を直列に使用します。 Table 1に一般的な出力電圧を設定する際の抵抗値を表示します。また Table 1に標準的な抵抗を使用した場合の近似値も表示しています。 Fig.B: Configuration for programming output voltage | Table 1: Trim Resistor Value | | | | | | |------------------------------|------------------------|---|--|--|--| | V _{O-REQ} [V] | R _{TRIM} [kΩ] | The Closest
Standard Value [kΩ]
R _{TRIM1} + R _{TRIM2} | | | | | 0.8 | Open | Open | | | | | 1.0 | 34.000 | 34.000 +0.000 | | | | | 1.2 | 16.500 | 16.500 + 0.000 | | | | | 1.5 | 9.000 | 7.500 + 1.500 | | | | | 1.8 | 6.000 | 3.000 + 3.000 | | | | | 2.5 | 3.118 | 3.000 + 0.120 | | | | | 3.3 | 1.800 | 1.800 + 0.000 | | | | #### Output Voltage Tracking (Pin 4 / PSS type) The **FPDK05SR8003PSS** converter incorporates an output voltage tracking function that enables 2 kinds of sequenced start-up and shut-down scenarios when using multiple converters: - ·Sequential - ·Simultaneous These scenarios are enabled using the external circuitry shown in Fig.D and Fig.E. If voltage tracking is not needed, the TRACK pin (pin 4) should be connected to Vin, as shown in Fig.C. FPDK05SR8003PSSコンパータは複数のコンパータを使用する際に、想定する2種類のシーケンス起動及び停止を可能にする出力電圧トラッキング機能を持っています。 想定されるこれらのシーケンス起動及び停止は、図D-図Eに示される外付け回路を使用することで可能となります。トラッキング機能を使用されない場合、下図のようにTRACK端子(4番ピン)をVinに接続として下さい(図 A recommended value for R1=10k Ω / R2=10k Ω . 各抵抗の推奨値はR1=10k / R2=10k Fig. C: TRACK pin connection to Vin **Data Sheet** ## FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output ### Sequential Sequential start-up and shut-down of converters PS1 and PS2 (Fig.D) is enabled by placing an On/Off circuit between the Vout of PS1 and the REMOTE pin (pin 3) of PS2. コンパー - PPS1とPS2のシーケンス起動及び停止(図D)はオン/オフ制御回路をPS1のVoutとPS2のリモート端子(3番ピン)の間に配置することで実行されます A recommended value for R1=10k Ω / R2=10k Ω . 各抵抗の推奨値はR1=10k / R2=10k Fig. D: Sequential For sequential start-up and shut-down, the PSV type converters of the FPDK05S Series can be used for both PS1 and PS2. In that case, R1 and R2 are not necessary. シーケンス起動及び停止については、PS1及びPS2ともにFPDK05シリーズのPSVタイプも使用可能です。その際は、R1及びR2は不要です。 #### Simultaneous Simultaneous start-up and shut-down of converters PS1 and PS2 (Fig.E), whereby the difference in output voltage between the converters during turn-on and turn-off is minimized, is enabled by connecting the Vout of PS1 to the TRACK pin (pin 4) of PS2. Note the output voltage setting of PS1 should always be higher than the output voltage setting of PS2. 電源オン及びオフ時のPS1とPS2間の出力電圧の差異を最小化する、これら2つのコンパータの同時起動及び停止は、図Eに示される様に、PS1の VoutをPS2のTRACK端子(4番ピン)に接続することで可能となります。 PS1の設定電圧は常にPS2の設定電圧より高い必要があることに注意してください。 A recommended value for R1=10k Ω / R2=10k Ω / R3=10k Ω . 各抵抗の推奨値はR1=10k / R2=10k / R3=10k です。 Fig. E: Simultaneous ## **Data Sheet** ## FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output The values of R4 can be determined from: R4の値は次の方程式から求められます。 $$R4 = \frac{70 \times (1 + Rtrimps2)}{71 + Rtrimps2} [k\Omega]$$ However, a recommended value of R4 is $70k\Omega$ for Vo=0.8V of PS2. 但し、PS2がVo=0.8Vの場合は、R4の値は70k を推奨します。 The PSV Type of the FPDK05 series can be used for PS1. In that case, R1 and R2 are unnecessary. PS1にはFPDK05シリーズのPSVタイプも使用可能です。その際は、R1及びR2は不要です。 #### Notes: (a) For simultaneous start-up and shut-down, the REMOTE pin (pin 3) of PS2 should be in the ON state before applying input voltage to PS1 and PS2. (The REMOTE pin of PS2 should be tied to Vin or left open.) 同時起動及び停止の場合、PS1とPS2に入力電圧を印加する前に PS2のリモート端子(3番ビン)はON状態にして下さい。(リモート端子をVinに接続、または未接続。) (b) For proper voltage tracking, the TRACK pin (pin 4) voltage should stay at 0V for 10ms or more after the input voltage reaches Vin-MIN. This time period allows for the initialization of soft-start. 適切な電圧トラッキングにおいては、TRACK端子(4番ピン)の電位は入力電圧がVin-MINに達してから10ms以上の間、0Vのままの状態を保持しておく必要があります。この時間は、ソフト-スタートの初期化のためです。 (c) Please do not impress the voltage to TRACK pin (4 pin) with the input voltage not impressed. 入力電圧を印加していない状態で、TRACK端子(4番ピン)に電圧を 印加しないでください。 ### **Protection Features** #### Input Under-Voltage Lockout From a turned-on state, the converter will turn off automatically when the input voltage drops below typically 2.0V. It will then turn on automatically when the input voltage reaches typically 2.4V. 動作している状態で入力電圧がTYPで2.0V未満になると、このコンバータは自動的に停止します。また、入力電圧がTYPで2.4V以上になると、このコンバータは自動的に動作を開始します。 #### Output Over-Current Protection (OCP) The converter is self-protected against over-current and short circuit conditions. On the occurrence of an over-current condition, the converter will enter a pulse-by-pulse hiccup mode. On the removal of the over-current or short circuit condition, Vout will return to the original value (auto-reset). このコンバータは過電流と短絡に対し自己保護します。過電流状態になると、このコンバータはパルス-パイ-パルス HICCUPモードになり、過電流状態が解除されるとVoutは通常の値に戻ります。(自動リセット) #### Over-Temperature Protection (OTP) The converter is protected against over-temperature conditions, using a built-in thermal protection feature in the PWM controller IC. In case of overheating due to abnormal operation conditions, the converter will turn off automatically. It will turn back on automatically once it has cooled down to a safe temperature (auto-reset). このコンバータはPWMコントロールICの持っている温度保護機能を使って過熱状態から保護されています。異常な動作条件などにより過熱保護が動作すると、コンバータは自動的に停止します。安全な温度まで下がると、自動的に再起動します。(自動リセット) ### Characterization #### Overview The converter has been characterized for several operational features, including thermal derating (maximum available load current as a function of ambient temperature and airflow), efficiency, power dissipation, start-up and shutdown characteristics, ripple and noise, and transient response to load step-changes. このコンバータは温度ディレーティング、効率、電力損失、スタートアップ時、及び シャットダウン時の動作、リップル・ノイズ、動的負荷変動などを含む、さまざまな動作状態で特徴付けられます。 Figures showing data plots and waveforms for different output voltages are presented in the following pages. 各出力電圧時のデータ、及び波形は以後のページに掲載されています。 #### **Test Conditions** To ensure measurement accuracy and reproducibility, all thermal and efficiency data were taken with the converter soldered to a standardized thermal test board. The thermal test board was mounted inside FDK's custom wind tunnel to enable precise control of ambient temperature and airflow conditions. 測定精度、及び再現性を確実にするために、全ての温度、及び効率 \hat{r} - ## **Data Sheet** ## FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output The thermal test board comprised a four layer printed circuit board (PCB) with a total thickness of 0.060". Copper metallization on the two outer layers was limited to pads and traces needed for soldering the converter and peripheral components to the board. The two inner layers comprised power and ground planes of 2 oz. copper. This thermal test board, with the paucity of copper on the outer surfaces, limits heat transfer from the converter to the PCB, thereby providing a worst-case but consistent set of conditions for thermal measurements. 温度評価ポードは厚さ0.060"(1.6mm)厚の4層PCBで作成しています。表面2層の銅箔はコンパータを実装するためのパット゚と周辺部品へのパターンのみに限定しています。内側2層は70μmの銅箔で電力、及びグランドラインを形成しています。このように表層の銅箔を限りなく少なくした温度評価ポードは、コンパータからPCBへの熱の逃げを制限し、ワーストケースでありながら矛盾の無い温度評価条件を実現しています。 FDK's custom wind tunnel was used to provide precise horizontal laminar airflow in the range of 50 LFM to 600LFM, at ambient temperatures between 30°C and 85°C. Infrared (IR) thermography and thermocouples were used for temperature measurements. (See Fig. F & Fig. G) FDK特製の風洞実験装置は水平方向の層流を50LFM(自然対流と同等、NC)から600LFMまで精密に制御でき、環境温度は30 から85 を制御できます。温度測定には赤外線(IR)サーモグラフィと熱電対を使用しています。(図F及びG参照) Fig. F: FDK Original Wind Tunnel Fig. G: Test Chamber #### Thermal Derating Fig.1 show the maximum available load current vs. ambient temperature and airflow rates. Ambient temperature was varied between 30°C and 85°C, with airflow rates from NC(50LFM) to 400LFM (0.25m/s to 2.0m/s). The converter was mounted horizontally, and the airflow was parallel to the long axis of the converter, going from pin 1 to pin 8. 図1はある環境温度と風量の条件下における最大出力電流を表します。環境温度は風量NC(50LFM)~400LFMの条件で30 ~85 の間を変動させています。コンパータは水平に設置し、風向きはコンパータの長手方向に平行で1番ビンから8番ビンに向けて吹いています。 The maximum available load current, for any given set of conditions, is defined as the lower of: - (i) The output current at which the temperature of any component reaches 120°C, or - (ii) The current rating of the converter (3A) 各々の測定条件で最大出力電流の値は下記のとおり定義します。 - (i) いずれかの部品の温度が120 に到達した時点の出力電流値、Xは - (ii) コンパータの公称定格電流 (3A) **Fig.1:** Output current vs. ambient temperature and air velocity at 5.0Vin, 0.8V to 3.465V out Note that continuous operation beyond the derated current as specified by the derating curves (Fig.1) may lead to degradation in performance and reliability of the converter and may result in permanent damage. 出力電流ディレーティングカーブ(図1)で指定された定格電流を超えた連続した操作は、性能の低下、信頼性の低下、及びモジュールの破損を引き起こすことがあります。 The main heat dissipation method of this converter is to transfer its heat to the system board. Thus, if the temperature of the system board goes high, even with the low ambient temperature, it may exceed the guaranteed temperature of components. ## **Data Sheet** # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output このコンバータの主な放熱方法は、システム基板へ自身の熱を逃がすというものです。このため、周囲温度が低くてもシステム基板の温度が高温になると、使用部品の保証温度を超えることがあります。 #### **Test Circuit** T The test circuit setup shown in Fig. H was used to obtain the output voltage ripple and output voltage response to step load change. Fig. J was used to obtain the input reflected ripple current waveforms. 図Hに示す試験回路は出力リップル及び負荷急変の測定に使用しており、入力リップルの測定には図Jの試験回路を使用しています。 Fig. H: Test setup for measuring output voltage ripple and output voltage response to step load change Fig. J: Test setup for measuring input reflected ripple current # **Data Sheet** # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output **Fig.2:** Efficiency vs. load current and input voltage for 3.465Vout Fig.4: Efficiency vs. load current and input voltage for 2.5Vout **Fig.6:** Efficiency vs. load current and input voltage for 1.5Vout **Fig.3:** Efficiency vs. load current and input voltage for 3.3Vout Fig.5: Efficiency vs. load current and input voltage for 1.8Vout Fig.7: Efficiency vs. load current and input voltage for 1.2Vout # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output # **Data Sheet** Fig.8: Efficiency vs. load current and input voltage for Fig.10: Turn on delay time at 5.0Vin, 3.465V/3A out Fig.12: Output voltage response to step load change at 5A/us from 50% to 100% (5.0Vin, 3.465Vout) **Fig.9:** Efficiency vs. load current and input voltage for 0.8Vout Fig.11: Output ripple and noise at 5.0Vin, 3.465V/3Aout **Fig.13:** Output voltage response to step load change at 5A/us from 100% to 50% (5.0Vin, 3.465Vout) ## **Data Sheet** # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output Fig.14: Turn on delay time at 5.0Vin, 0.8V/3A out Fig.16: Output voltage response to step load change at 5A/us from 50% to 100% (5.0Vin, 0.8Vout) Fig.15: Output ripple and noise at 5.0Vin, 0.8V/3Aout Fig.17: Output voltage response to step load change at 5A/us from 100% to 50% (5.0Vin, 0.8Vout) # **Data Sheet** # FPDK05SR8003PS* 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output #### Mechanical Drawing TOP VIEW OF BOARD TOP VIEW OF BOARD SIDE VIEW OF BOARD RECOMMENDED PAD LAYOUT #### Notes - All dimensions are in millimeters (inches) - Unless otherwise specified, tolerances are +/- 0.25mm - Connector Finish: Gold over Nickel - Converter Weight: 0.039oz (1.1g) | Terminal Connections | | | | | | | |----------------------|-----------------------|------|------------|--|--|--| | Pin# | Function | Pin# | # Function | | | | | 1 | Vin | 5 | TRIM | | | | | 2 | GND | 6 | POWER GOOD | | | | | 3 | REMOTE | 7 | GND | | | | | 4 | PSV: NC
PSS: TRACK | 8 | Vout | | | | #### **DK Series Part Numbering Scheme** | Product
Series | Sub
Series | Nominal Input
Voltage | Mounting
Scheme | Output
Voltage | Rated
Current | ON/OFF
Logic | Option
1 | Option 2 | |-------------------|---------------|--------------------------|--------------------|---------------------------------------|------------------|-----------------|-------------|----------------------------| | FP | DK | 05 | S | R80 | 03 | Р | S | * | | Series | Name | Typ=5.0V | Surface Mount | 0.8V
(Programmable:
See page 6) | 3A | Positive | Standard | V: Standard
S: Tracking | ### FPDK05SR8003PS* **Data Sheet** 3.0-5.5Vdc Input, 3A, 0.8-3.465Vdc Output #### **Notes** #### Pattern design - Please prohibit patterns other than 0V shield pattern the pattern drawing under the product considering the interference etc. of the insulation failure and another circuit. #### パターン設計 ・ 製品下面へのパターン引き回しは絶縁不良および他回路との干渉等を考慮して0Vシールドパターン以外のパターンは禁止してください。 NUCLEAR AND MEDICAL APPLICATIONS: FDK Corporation products are not authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the written consent of FDK Corporation. 核および医療のアプリケーション: FDK製品は生命維持装置、危険な環境に使用される設備、または核制御システムにおいてFDKの承諾書なしでは重要な要素としての使用は認可されません。 CLEANSING: Cleansing of this converter is not recommended. When cleansing, determine a cleansing condition on your own responsibility after confirming there is no impact on the characteristics/performance of the converter. 洗浄:本コンパータの洗浄は推奨いたしません。 洗浄する場合の洗浄条件は、貴社様責任において本コンパータの特性/性能に影響が無い事を確認して決定してください。 SPECIFICATION CHANGES AND REVISIONS: Specifications are revision-controlled, but are subject to change without notice. 仕様の変更と版数: 仕様は版数によって管理されていますが、予告なしで変更する場合がございます。