SNo Edge 50

Intel MAX 10 FPGA System on Module

User's Manual and Release Notes

April 11, 2022

Version Date Author Changes
0.7 April 6, 2022 Steve Phillips | Initial Version
1.0 April 11, 2022 Steve Phillips | First official release

Copyright 2022 Alorium Technology, LLC

2

Table of Contents

1 INTRODUCTION ..couiiiiiieiiieiiieiieireeirneirnestraetrasitrasissassteassreessrssssrssssrasssrassssnssssnsssenssssnsssanssrans 5
2 PROGRAMMING SNO EDGEcieuuiiieirmeiireeiinniiresiiresieesiisesirsesirsessrasssrasissssssssssrenssrssssrsssssassses 6
21 MicCrocoONtroller ProglramINiNg ... oumsmsmssssssssssssssssssssssssssssnsssasssssssssssssssassssasssssss s s s se s s s s s s e e A SRR SRR RS AR AR R R R 6

2.1.1 USB PIrOZIAITIITIIIIE ..ccueeueeueesessesssessesssesssessesssessssssessssssesssessesssessasssessesssessses sesssessesssesssessesssessssssessssssesssesassssssssssssssssssassssssasssasssessasssessassnes 6

2.1.2 FTDI PrOGUIAITIMIIE ...coeeureessesserssessesssesssessesssessssssessssssssssessessssssssssessesssessses sesssessesssesssessesssessssssesssessssssesassssssssssssssssssassssssssssasssessasssessnssses 6
2.2 FPGA Programming........ccccusesssssanas

2.2.1 Updating the FPGA Image

2.2.2 Restoring FACtOry FPGA IMAGE ..o seesss s s ssssses s bbb ss bbb st sssessssnss 8

2.2.3 Creating Custom FPGA Images With OPENXLRS.......coieeeeeenneesseesessssssssessessssssssesssssssssssessssssssasssassssssssassssssssesssassssssssesas 9

2.24 Bare-Metal FPGA PrOGIAmMIMIIEoceieureesmeesseesseessesssesssessssssssesssessssssssesssessssssssesssessssssssassssssssesssassssssssasssassssesssasssassssesssassssssssesas 9
3 GENERAL TECHNICAL SPECIFICATIONSccuiiieiiiiiiieiiineireeireeirnsirnessassieassnsessrsessrsnssrssssrassssnes 11
3.1 K 70 2 A 1 0 11
3.2 D O 11
3.3 W1 LT 000 10 1 12
3.4 0 T, 12
3.5 o0)5 0 155 2 1 12
4 XCELERATOR BLOCKS (XBS)....ccceeetereeumnnnnnnsssssssssssssssssnssnsssssssssssssnsssssssssssssssssssssssssssssssssssssssnnnnne 13
4.1 00 U7 U0 07]) L 13
4.2) a0 T 002 11 13
4.3 L0 1 T2 1 g 110 13
5 PINIMAPPINGcoeeiriiiiinitiiiriiireiiresitresirsess et reessraessrsessrasssrasssrassssnsstenssssnsssssssranssrasssrasssrnes 15
6 EXTENDED INTERRUPTSieiiiiiiiiiiieiiriiri et rses st reessrassssassssnssseassssasssssssrensssasssrassssnes 18
6.1 GPIO Port Pin Change DeteCioNimmsmmssasssassssssssssssssssssssssasssssssssssasasasan 18
6.2 Pin Change INTETTUPES ..cucciieiiiimsssssssssssssssssssssss s sssssssssssssss s s se e E AR R AR AR AR AR A A SRR AR AR SRR AR AR R R R AR R AR R RS 18
6.3 (030121 B0 2 4] g o 19
6.4 EXEENA@A TRQS ...ociuniirersnsessssssssssssssssssssssasssssssssssasssssssssssassssssss sssssasssssssssssas sesssassssss sesssas s sssss sesnsss sesss s assas sesssss sesas sesssassnssssnsens 20

Copyright 2022 Alorium Technology, LLC
3

6.5 SELUP AN USAGE...uiuiuiurrrisisssmsmsassisssssssssssssssssssssssss s ss s s s s s s e s E AR AR R A SRS E AR E AR E AR AR R AR AR RS E A A A SRR R AR AR SRR AR AR R R R R AR R AR R RS 21

6.6 5561 107 0) L 0123 00 0L A 3 ol o 21

7 REGISTER SUMMARYiiuiiiiiiiiiiiiniiiniiniiiieeiinieeinieeiinieneiiisesiiriessstesssertssssnesssestssssssessssssees 24

7.1 Sno Edge and XB Register Descriptions
7.1.1 RegiSter ACCESS DEfINItIONS iuuierrerrereeesresseesseessesseesssesssesssessssssssess s sssessssssssssssasssssssssssssssssssssesssassanes
7.1.2 0T ooy W DA) U I T
7.1.3 POItS JA, JB, JC, QNd JD sttt sssssss s ssssssssssssss s sssssssssssssssssssss s ssss s ssss s ssss s s s s
7.1.4 Ports KA, KB, KC, and KD...
% T T <0 i 5 PP
7.1.6 XFCTRL, XFSTAT, XFRO, XFR1, XFR2, XFR3- Floating Point XB ReISTETSccurmmnssssssssssssens 32
7.1.7 CLKSPD - Clock Speed Register

7.1.8 XICR, XIFR, XMSK, XACK — Extended IRQ ... sssens

7.1.9 OXS8ICR, OX8IFR, OX8MSK — OpenXLR8 INTEITUPLS ..oovverurrrrersssssssrsssens

7.1.10 SPICR, SPIFR, SPIMSK - Sno Pin Change Interrupts...

7.1.11 XLR8ADCR - Sno Edge ADC Control Register...............

7.1.12 FCFGCID — Chip ID ReZIStET ..cvirirrrrrersirssssrsssens

7.1.13 FCFGDAT, FCFGSTS, FCFGCTL - FPGA Reconfiguration Registers

7.1.14 XLR8VERL, XLR8VERH, XLR8VERT - Version Number Registers..............

7.1.15 XLR8Quad — XLR8 QUAAIatUIE....ouuermesrrrnmesissesssesans

7.1.16 XLR8PID = XLR8 PID.ccvuiirerusisrsssssssssssssssssssssssssssssss st st ssss st ssss s ssss s ssss s s ssssssssssssssasasssssssss

7.1.17 SVPWH, SVPWL, SVCR — Servo XB REeGISLETS.....ocorireriererriresseesesssessesses s sssasssessees
7.2 Using the Sno Edge Registers in SOftWare.......sssssssssssssss s ssssssssssss 38
8 SCHEMATICS AND OTHER RESOURCESccccciiteiiieiineiiriiiieeirneirneirasieessisesirsessnsessrssssrassssaes 41
9 1 20 =3 0 8 1 42
10 APPENDIX A —ARDUINO IDE INSTALLATION AND RUNNING TEST PROGRAM..........cccecvreerrnnnnee 43
10.1 InStalling ATAUINO IDE.....sicssssissssssssssssssssss s e eSS AR RE AR AR SR SRR AR R R R AR R R AR R AR AR R AR 43

10.1.1 IMICTOSOFE WINIAOWS ..coueeereeeesseeesseesseessssesssssssesssesssesssssssssssssssssssssassssesssesssessses s asssessssssssasssessssesssessssssssasssessssesssassssssssesssassssssssesess 43

10.1.2 Mac 0S X

10.1.3 LinuX...cooeeee.
10.2 FTDIDriver INStallation ... sssssss s s asas s s s s asas s s anananes 43
10.3 Installing Sno Edge Board Package and LIDIraries ... s 44

10.3.1 Add SN0 EAZE BOAIA SUPPOT L. ceuieeeeeeeesreesseesseessessseesssesssesssessssesssessssssssssssessssesssasssessssesssasssessssesssassssssssasssassssssssassssssssesssassssees 44

10.3.2 ST10 EQGE LIDIAITOS c..eueeureeerrrerseessseesseesssessssssssssssessssssssssssssssssssasssessssssssassssssasssssassssssssasssassasesssasssassssesssassssesssasssassssesssasssassssesssasssnees 47
10.4 Running an EXample SKetCh/ProgramM..... . ssassssssssssssssssssssasssssss 47

Copyright 2022 Alorium Technology, LLC
4

1 Introduction

Sno Edge 50 is is an Intel MAX 10 FPGA System on Module (SOM) that includes an 8-bit AVR
compatible microcontroller integrated on the FPGA for easy programmability and optimized
access to the FPGA fabric for custom hardware functionality.

Based on Alorium Technology’s very popular embeddable Sno FPGA module, the Sno Edge 50
enhances the powerful features and functionality of Sno with significantly increased digital [/0,
additional ADCs, and more FPGA logic gates for custom Xcelerator Block development.

All of this functionality is packaged in a 200-pin SODIMM form factor for the ultimate in low-
profile physical integration.

iy

| L O b <
ma2S0 o IR, SR T

€5 “ci4

Note:

Sno Edge 50 is the first release in a planned roadmap of “Sno Edge” boards and is named based on
the fact that it has a 50K LE MAX 10 FPGA. Additional variations of the design may be produced
based on customer demand and FPGA availability.

For the remainder of this document, Sno Edge 50 is referred to as simply as “Sno Edge”, and this
label can be considered synonomous for the purposes of this manual.

Copyright 2022 Alorium Technology, LLC
5

2 Programming Sno Edge

2.1 Microcontroller Programming

The embedded microcontroller on Sno Edge is easily programmable with the Aruino IDE. Refer to
the Appendix in Section 10 of this document for Arduino IDE installation instructions if you don’t
already have it installed on your development machine.

Other programming tools such as Atmel Studio, PlatformIO/VSCode, and others may also work for
programming Sno Edge. However, Arduino is the only officially supported programming
environment for Sno Edge.

2.1.1 USB Programming
Sno Edge is designed to be programmed via a USB connection.

There is an on-board FTDI USB-to-Serial translator chip that converts USB signals from the edge
connector pins to serial UART commands used for programming the microcontroller.

Note: There is NO USB connector directly on Sno Edge. The physical USB connection will be made
on the carrier board that is being used with Sno Edge.

For example, this image shows the USB connector on Alorium’s Sno Edge test breakout board:

Connector‘. '

.

Flgure 2: USB Connectlons

2.1.2 FTDI Programming
Sno Edge also has a 6-pin FTDI header at the top of Sno Edge that is used for initial
microcontroller programming and test during the manufacturing process.

Copyright 2022 Alorium Technology, LLC
6

Figure 3: FTDI Vias

The FTDI interface can be used for general serial programming of microcontroller, as well;
however, it does require using A USB-to-FTDI adapter of some kind. One of our favorites is the
SparkFun Beefy 3 Basic FTDI Breakout.

2.2 FPGA Programming

The FPGA on Sno Edge comes pre-programmed with an image that includes the microcontroller as
well as a pre-configured set of Xcelerator Blocks developed by Alorium Technology.

Alternate images can be uploaded directly through the Arduino IDE or accessed via our GitHub
repo and flashed to the FPGA using a command-line program as described below.

2.2.1 Updating the FPGA Image
Sno Edge ships with a standard FPGA image that includes the 8-bit microcontroller and a small set
of built-in Xcelerator Blocks.

This image can be updated with other images provided by Alorium Technology by using the “Burn
Bootloader” command in the Arduino or by running a standalone command-line program.

Video Demonstration Examples

NOTE:

The following videos were originally created for our XLR8 board as demonstrations for how to
upload new FPGA images from the Arduino IDE or with our command line program. The process
for Sno Edge 50 can be accomplished by selecting Sno Edge 50 as the board, instead of XLR8.

Demonstration videos using Sno Edge will be available soon on our YouTube channel, and this
manual will be updated to reflect the new tutorials.

Copyright 2022 Alorium Technology, LLC
7

2.2.1.1 Flashing A New FPGA Image via Arduino IDE

& Arduino File Edit Sketch [T Help Tue Sep 19 2:38 PM _Jason Pecor
Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor
Serial Plotter

QO

16MHz Standard (Float, Servo,NeoPixel) r2108
Hz St ixel)

Programmer: "AVRISP mKi"
Burn Bootloader
etting is chosen under Tools->FPGA Inage
i} // Handle carly hardware that didn't have getUBRR115200() func
correctly so we don't see gibberish on serial monitor
Do not use ‘eader on this board. The ICSP Ve and Gnd pins are snapped”);

+/= 1 on UBRR setting usually still works
to a selection with the folloving Miz");

Figure 4: Arduino IDE Video

2.2.1.2 Flashing A New FPGA Image Using the Command-Line

@ ScreenFlow Fle Edt Mark st Fort Actons Amange View Window el

How to Upload FPGA Images Using the Command Line

With a Four Quadrature FPGA Image

Figure 5: Command Line Video

2.2.2 Restoring Factory FPGA Image

The FPGA on Sno Edge can hold two different FPGA images. One of those, the User Image, can be
reconfigured with new images to take advantage of increased functionality as new features are

Copyright 2022 Alorium Technology, LLC
8

introduced and released. The other image, the Factory Image, is never changed, and is typically
unused unless the primary image 1 becomes corrupted.

If necessary, a “factory reset” of Sno Edge can be performed by bridging the two sides of the split
CFGO pad while applying power to the board. It only takes a momentary grounding to cause this to
happen. See Figure 6 for the location of the CFGO pad.

After power-up, the Factory Image will be loaded. However, any loss of power to the board will
result in the corrupted image being reloaded. Therefore, the user will want to flash a known-good
image into the User Image before proceeding.

2.2.2.1 Locating CFGO

Alorium TechnologyQs
Sno Edge 50 >

aloriumtech.com/snoed

2.2.3 Creating Custom FPGA Images with OpenXLR8

As with all of our products, the FPGA can be programmed with your own custom FPGA image by
using our OpenXLR8 FPGA process. OpenXLR8 is the methodology that allows users of all our
XLR8 products to develop their own custom Xcelerator Blocks and integrate them into the FPGA.

You can learn more about how to use OpenXLR8 here:

Introduction to OpenXLR8 <https://aloriumtech.com/openxIr8/>

2.2.4 Bare-Metal FPGA Programming
For advanced FPGA users, Sno Edge does have a JTAG header that can be used for creating bare-
metal FPGA designs and directly flashing a new image to the FPGA.

Use of the JTAG interface will require that user has the appropriate JTAG programming hardware
such as the JTAG Blaster programmer from Intel.

Copyright 2022 Alorium Technology, LLC
9

Figure 7: JTAG Vias

IMPORTANT NOTE!!

If the JTAG interface is used to load the MAX10 FPGA with a custom image, it is possible to erase
the production Sno Edge functionality, deleting the factory production image and the integrated 8-
bit microcontroller subsystem. In this scenario, loading images through the Arduino IDE would no
longer be possible.

The Sno Edge FPGA has been designed to be modified and extended by using Alorium’s OpenXLR8
Methodology. This flow provides a path to create custom XBs in the FPGA fabric that can easily

interface to the on-chip microcontroller and preserve full factory functionality.

Learn More about OpenXLR8 here: https://www.aloriumtech.com/openxIr8

Copyright 2022 Alorium Technology, LLC
10

3 General Technical Specifications

3.1 3.3vVI/O

Sno Edge is a 3.3V device, and users are cautioned to only connect to other 3.3V devices.

The Sno Edge does not come equipped with pull-up resistors so the user is required to add them
physically as needed, except for the dedicated SDA and SCL pins which have 1K ohm pull-ups..

3.2 ADC

Sno Edge supports 16 ADC inputs via two eight input ADC modules. The ADCSRB register now
supports the MUX5 bit (bit 5) which is used to select which ADC input is read.

The exact mapping of the ADC inputs is show in Figure 8.

ADC Input ADCSRB[5] ADMUX]|[2:0] FPGA Input Edge Arduino Label
MUX5 MUX][2:0] Connector
0 0 0 ADC1[1] 26 A0
1 0 1 ADC1[2] 24 Al
2 0 2 ADC1[3] 31 A2
3 0 3 ADC1[4] 29 A3
4 0 4 ADCI1[5] 25 A4
5 0 5 ADC1][6] 23 A5
6 0 6 ADC1[7] 19 A6
7 0 7 ADC1[8] 17 A7
8 1 0 ADC2[1] 16 A8
9 1 1 ADC2[2] 13 A9
10 1 2 ADC2[3] 20 A10
11 1 3 ADC2[4] 22 Al1l
12 1 4 ADC2[5] 7 Al12
13 1 5 ADC2[6] 5 A13
14 1 6 ADC2[7] 11 Al4
15 1 7 ADC2[8] 14 A15

Figure 8: Dual ADC Input Mapping

An Arduino variant has been defined for the Sno Edge so the user does not need to be concerned
with the mapping of ADC inputs to ADCSRB/ADMUX register fields. The user can simply reference
the Arduino Label in their sketch. For example: analogRead (A12), to read the ADC input on
Edge Connector pin 7.

Sno Edge is only able to measure against an internal 3.3V reference. The ADC inputs themselves
are limited to a max input voltage of 2.5 volts.

Copyright 2022 Alorium Technology, LLC
11

The temperature sensor are not implemented (ADMUX=1000).
Using the ADC to read the bandgap (ADMUX=1110) does not actually do a measurement but
returns a calculated value equivalent to 1.1/Aref.

Using the ADC to read ground (ADMUX=1111) does not actually do a measurement and instead
returns a fixed value of 0.

3.3 Analog Compare

Sno Edge does not support the Analog Compare function that is found in the ATmega328p. The
ACME bit and analog compare triggering (ADTS=001) of the ADCSRB (0x7B) register, the ACSR
(0x30) register, and the DIDR1 (0x7F) register are not implemented.

If an analog compare function is desired, using the OpenXLR8 platform, a user could implement an
analog compare function that is very similar to the ATMega328's, although the pin voltage would
need to be limited to 3.3V.

3.4 Power

There are 3 ways to power the Sno Edge module:
e Connecta 3.3V FTDI breakout board or cable to the FTDI interface
e Supply 5V via pin 2 of the SODIMM connector (this is intended to come from a USB
connector on the system board). This will use an on-board 3.3V regulator to supply power
to the FPGA and other components on the board, and is limited to 500mA
e Supply 3.3V via the dedicated power pins on the SODIMM connector (this is the most
robust way to power the Sno Edge board)

3.5 Pin 13 LED

As with many other Arduino-compatible boards, digital pin 13 is used for both the on-board LED
as well as the SPI clock, SCK. On Sno Edge, SCK and the LED are driven from separate FPGA pins
which are logically equivalent but physically separate, in order to avoid the extra loading the LED
can cause.

Copyright 2022 Alorium Technology, LLC
12

4 Xcelerator Blocks (XBs)

Xcelerator Blocks are custom hardware blocks implemented within the Sno Edge FPGA chip and
are tightly integrated with the ATmega328 clone that is also implemented inside the FPGA chip.

These custom hardware blocks can implement almost any functionality you can dream up, and can
then be loaded into the Sno Edge with the Arduino toolset. Since an FPGA can be reprogrammed
many times, a single Sno Edge can be reconfigured to incorporate different XBs depending on the
project requirements.

Sno Edge ships with three sample XBs: Floating Point, Quadrature, and Servo Control. The
software libraries are delivered as .zip files from our github site
(https://github.com/AloriumTechnology). They are installed like other Arduino .zip libraries as
described here (https://www.arduino.cc/en/Guide/Libraries).

4.1 Floating Point

As an 8 bit microcontroller, the ATmega328p struggles with floating point math. The Floating
Point XB provides functions that will give you floating point results in about % the time that it
takes software floating point to get the same answer. Available functions include add, subtract,
multiply, and divide.

4.2 Servo Control

[t is common for the standard Servo.h library to cause jitter in the servo control due to timing
uncertainties caused by interrupt processing. The Servo Control XB completely eliminates this
jitter by putting a dedicated hardware timer behind Port K pins. The XLR8Servo.h library is a
drop-in replacement for the standard Servo.h library, so taking advantage of this XB is as simple as

changing one line in your sketch from #include <Servo.h> to
#include <XLR8Servo.h>

The servos are connected to the physical pins starting with Port KA, pin 0, going through port KD,
pin 7, with each servo connected to the one sequential pins in order. So, servo 0 is tied to KA[0],

sevo 1 is tied to KA[1], servo 31 is tied to KD[7], etc. You can instantiate an array like this: Servo
servo[32];

4.3 Quadrature

The Sno Edge builtin Quadrature XB provides up to 16 Quadrature encoders. These are connected
to Port], which is the concatination of ports {JD,JC,]B,JA}.

As quadrature objects are instantiated, they are created sequentially. I.e., the first quadrature
object will control quadrature 0 in the fabric, the second will control quadrature 1, etc., through
quadrature 16.

Copyright 2022 Alorium Technology, LLC
13

The quadratures are connected to the physical pins starting with Port JA, pin 0, going through port
JD, pin 7, with each quadrature connected to the two sequential pins in order. So, quadrature 0 is
tied to JA[1:0], quadrature 15 is tied to JD[7:6], etc. The simplest way to manage multiple
quadratures in an application is to create an array of quadrature objects. You can instantiate an
array like this:

Quadrature quadratures[16];
The XLR8Quadrature library is included with the line

#include <XLR8Quadrature.h>
Once you instantiate an quadrature object, the quadrature is enabled by default. The software
library then allows you to disable & re-enable the quadratures, and read the count and rate values

of the quadrature. By default, the quadrature samples every 200ms to get the rate, but can be set
to sample every 20ms instead.

Copyright 2022 Alorium Technology, LLC
14

5 Pin Mapping

With a handful of exceptions, the pins are arranged into 18 ports, each of which can be up to 8 bits
wide. They can be organized into four groups:

1. First there are the standard Arduino Uno ports: D, B, and C. Note that ports B and C are
only 6 bits wide. In the case of Port C this creates a gap in the “D” pin numbering since
there is no C[7:6] which would correspond to D pins [21:20].

2. Then there are the standard Sno extended ports A, E, and G. All boards in the Sno family
implement these three extended ports.

3. Following the Sno extended ports are the] and K ports. There are four] ports (JA,]B, JC,
and]D) and four K ports (KA, KB, KC, and KD). These can be treated in software either as
32 bit ports or as four 8 bit ports. The Sno Edge variant provides support for both.

4. Finally, the PL port provide four pins that can also be used as two differential PLL inputs

Aside from the port pins, there are various non-port pins that provide specific functionality:

e C(lock e ADC Reference
e Reset e [2C
e ADC e Serial

In the following figures a Color Key is used to indicate how the various types of pins are organized:

Color Key

Ground
Power

Special Functions
ADC1

ADC2

Port D - Non-Differential
Port B - Non-Differential
GPIO Port - Differential
GPIO Port - Differential

PLL Port - Differential
Figure 9: Pin Map Color Key

In Figure 10 the ports are enumerated and the bit ranges are specified. Of special interest is the
numbering gap in the D Nums column at [21:20], as discussed above. The XB Busses, which are
used in the OpenXLR8 module, do not have a gap at [21:20] and so are offset by 2 from the D Nums
for pins above 19.

The Int Bit column indicates which bit in the SPCIFR register will get set when there is a pin
change interrupt for that port.

Copyright 2022 Alorium Technology, LLC
15

The GPIO column indicates whether the pins in that port are differential pairs or not. A “D”
indicates a differential pair port. By default all pins are normal non-differential GPIO pins in these
ports, but it is possible in the OpenXLR8 methodology to change the configuration of those pins to

be differential.

Port Name Port Bits

00

D Nums

XB Busses

Int Bit

GPIO

wn

B 6 S
C 6 19: 14| [19:14] D
A 6 27: 22| [25:20] 0 D
E 6 33: 28| [31:26] 1 D
G 8 41: 34| [39:32] 2 D
IA 8 49: 42| [47:40] 3 D
IB 8 57: 50| [55:48] 3 D
3C 8 65: 58| [63:56] 3 D
D 8 73: 66| [71:64] 3 D
KA 8 81: 74| [79:72] 4 D
KB 8 89: 82| [87:80] 4 D
KC 8 97: 90| [95:88] 4 D
KD 8 105: 98| [103:96] | 4 D
PL 4 109: 106|[107:104]| 5 D

Figure 10: Port Numbering

In Figure 10, the mapping between the FPGA pins and the Sno Edge connector pins is shown. The
table is split two halves representing the odd side and the even side of the connector. For each
connector pin, the following information is shown:

Column Description

Edge Connector Pin | The pin number of the edge connector

FPGA D Pin The “D” pins are numbered from 0 up to 109. These numbers can be
used directly to specify pins in functions such as digitalWrite()

FPGA Port Bit

The pins are all arranged into ports of up to 8 bits. The Port Bit
indicats which pin in a port

FPGA Pad The FPGA Pad specifies which physical pin on the FPGA the
corresponding signal is using.

FPGA Pin Type

The Pin Type indicates any important type desciptor for FPGA Pad,
such as Diff pair, GND, or VCC

Special Function

Special Function uiindicates any special note about that pin

Figure 11: Edge Connector Table Information

In Figure 12, each differential pair is indicated by a box around the two pins. For instance, edge
pins 30 and 32 are a differential pair.

Copyright 2022 Alorium Technology, LLC

16

ADC2in6
[ADC2inS

ADC2in7
ADC2in2

ADC1in8
ADC1in7

ADC1in6
ADC1in5

ADC1in4
ADC1in3

no diff pair

no diff pair

no diff pair

pair w/17@

Special

PinType PAD PortBit DBit Pin|(|[Pin DBit PortBit PAD PinType Function|
ADC_REF E4ADC_REF na 2 5.0V
GND 4 usB- Serial
L6P B2ADC2[6] na 6 UsB+ Serial|
LGN C2ADC2[5] na 8 GND
GND. 10 na RESET_NB1@ RESETN RESET_N|
e B1apc2[7] na 11([|f12 GND
w8pcimoce2] na 13||[|[z2 na moces1 3 ep ADC2in8|
GND 16 na ADC2[1] C4 LN ADC24n1]
L7P D1 ADC1[8] GND
L7N E1ADC1[7] na ADC2[3] E3 LaN ADC2in3|
ADC2[4] F2_ L4P ADC24n4|
LSP F1ADC1[6] ADC1[2] F4 LIP ADC14n2|
LSN G2 ADC1[5] ADC1[1] F5 LIN ADC1in1
GND.
L3P G5ADC1[4] c[e] 32 L22p
L3N HS ADC1[3] c[1] 33 LN
GND. GND
L20p H6 C[2] 16 18 C[4] K2 L29P |
L2eN 35 C[3] 17 19 C[5] L1 LN
GND GND
Connector Gap Connector Gap
GND. GND.
L3N 26 A[@] 22 24 A[2] K5 LaIN |
L36P K6 A[1] 23 25 A[3] L6 Lawp
GND. GND
137p L2 A[4] 26 na Clock L3 FPGA_(LK_i CLK|
7N M2 a[s] 27 siff|ffs2 na Clock n M3 FPGA CLK CLK|
GND. s3] |[{[54. GND
| B2p R1 E[e] 28 ss||||[se 30 E[2] P1 L38P |
BN P2 E[1] 29 s7ffflfss 31 E[3] N2 L38N
GND. s9]|[{[se GND
sp 12 E[4] 32 eilfllle2 34 Gle] R2 B4 |
BN T3 E[5] 33 e3fffllea 35 G[1] R3I BaN
GND. 3 ||| E3 GND
Lsov N3 p[e] 106 o7|||[[es 36 G[2] Ra BSN
Lsop na pL[1] 107 eolllflze 37 6[3] Ps Bse
GND 71)|{||72 GND
BIN P4 G[4a] 38 73||||[74 4@ G[e] T4 Biap
| B1IP N5 G[s] 39 7sflill7e 41 G[7] 75 Bian |
GND 77||[|[72 GND
B13P D[e] olZ 11| E3 D[1] R6 _ BI3N no diff pair|
3.3V 1(|[)s2 3.3V
B16P p6 3e] 42 s3f[|fss 4a J[2] R8 B17P
I B16N R7 (1] 43 ssfllse a5 J[3] T8 BIN |
3.3V 87(|([s8 3.3V
B1SP L8 D[2] 2D ||| ECE 3 D[3] M7 BISN no diff pair
BN M6 (4] 46 oilflfsz 48 J[6] M8 B2eN
B3P 17 3[s] 47 o93llllfos a9 3[7] M9 B20P
3.3V B3 |11 E3 3.3V
B18P P8 D[4] 4 Y ||| E:N 5 D[S] P9 BISN no diff pair
B3P L9 J[8] se oof|[|[ree s2 J[18] R9 B1%P
B3N Mo 3[9] 51 _eiff|lie2 53 J[11] T9 _ BISN
3.3V 103||[[204 3.3V
822p R1e 3[12] 54 1es|[[[1es s6 3[14] Pie B3aN
| B22N 711 3[13] 55 1e7[||zes 57 J[15] P11 B34P |
BS7N M11 SsoA na 1ed|[|[12e na scc Lie es7e sci|
3.3V 111f||]112 3.3V
| B3N R11 3[16] 58 113|[[[114 ee a[18] P12 B37P |
B3sp R12 3[17] 59 slfl116 61 3[19] P13 B3N
3.3V 117)|||[218 3.3V
R2P T14 D[6] [119||f][220 D[7] T15 RN no diff pair
GND. 121|[]222 GND
RIN R14 3[20] 62 123||[|[124 64 3[22] N4 R27P |
R1P P14 3[21] 63 12s||l{f126 65 3[23] P15 R2N
GND. 127|||[[228 GND
R29N P16 1[24] 66 129|(|[[13e [B[@] L12 R25N no diff pair|
R29P N16 3[25] 67 131f||f]132 GND
GND. 133||[[[134 68 J[26] M14 R28N
| R33p M16 1[28] 7e 13s|||[]136 69 J[27] _M15_ R28P
R3IN_L16_3[29] 71 137|||[[138 GND
GND. 139||[[[12e 72 J[38] K14 R32P |
R30P K11 K[e] 74 141 142 73 J[31] L15 R32N
R3eN k12 k[1] 75 1a3l||f[1a4 GND
GND 1as({|[145 76 K[2] 11 R3sP
no diff pair a7|((|f248 77 Kk[3] 312 R3sN
GND. 1a9||[|[150 GND
RaeP 115 k(4] 78 151)||[[152 se k[6] Hi5 Ra1p |
RaeN 316 k[5] 79 1s3|f{lf1sa 81 K[7] _ H16 R4IN
GND. 155|||[256 GND
| Rasp W11 K[8] 82 157|[|[[158 84 K[18] G11 RSP |
Ra4N W12 K[9] 83 159|f|flice 85 K[11] 612 RSeN
GND 161)|||[262 GND
RGN G15 0] 1e3)||[[164 86 Kk[12] G16 Ra7P |
GND. 165||[|[266 87 K[13] F16 R47N
R51P F14 k[14] 88 167||[[168 GND
RSIN E14 K[15] 89 169|||[]17e pair w/163
GND. 171)||||272 GND
€15 k[16] 9 173|||[[174 1e8 PL[2] D1 ResP | PLL
€16 k[17) 91 17sf|f]176 189 PL[3] c1a4 Re9N PLL
177||||[278 GND
Ra2P D16 K[18] 92 179|[||[18e o4 K[20] D15 R7eP
Ra2N_ 16 k[19] 93 1siffflf1s2 95 K[21] C15 _R7eN
GND 183|||[284 GND
no diff pair [EELEEITTSIET] 1ss|(|{[186 96 K[22] c13 T2p |
GND. 187||(|[288 97 K[23] C12 TN
T3ep 813 Kk[24] 98 189||[|[190 GND
T3eN A13 Kk[25] 99 191flflf192 180 k[26] D12 TP |
GND 193||[[[294 101 k[27] E11 TIN
T28p F1e Kk[28] 102 195||[|[196 GND
128N E10 K[29] 103 197||[[[198 1es k[3e] B12 Ta1P
L VPR T T 199f|f|f2ee 15 k[31] B11 TaIN

no diff pair

Figure 12: Pin Mapping

Copyright 2022 Alorium Technology, LLC

17

6 Extended Interrupts

The Sno Edge extends the AVR architecture to implement additional interrupts for extended GPIO
pin change interrupts and for user-defined interrupts in the OpenXLR8 methodology.

6.1 GPIO Port Pin Change Detection
The Sno Edge extended GPIO ports support pin change detection in a way similar to the standard
ports. Port pins are monitored and if a pin change is detected, an interrupt can be generated.

Each GPIO port has a PCMSK that can be used to enable pin change interrupts on a per-pin basis.
The Sno Edge extended GPIO PCMSKs are:

e PCMSKA e PCMSKJA e PCMSKJA
e PCMSKE e PCMSKJB e PCMSKJB
e PCMSKG e PCMSK]C e PCMSK]C
e PCMSKPL e PCMSKJD e PCMSKJD

The PCMSK register contains a bit for each pin in the port. A PCMSK bit value of zero will prevent a
pin change on the corresponding port pin from causing an interrupt signal to be generated. The
PCMSK does not support bit set or bit clear operations, so a read-modify-write operation should
be used to change individual bits.

6.2 Pin Change Interrupts

Pin Change notifications from the ports are collected and controlled by three registers:

Register Description

SPCIFR Sno Pin Change Interrupt Flag Register
SPCICR Sno Pin Change Interrupt Control Register
SPCIMSK Sno Pin Change Interrupt Mask Register

Figure 13: Sno Pin Change Interrupt Registers

The bits in the above registers correspond to the ports in the following way. Notice that the four Jx
ports and the four Kx ports are combined into single bits:

Bit Interrupt Source

Port A

Port E

Port G

Port] (JAor]JBor]Cor]D)
Port K (KA or KB or KC or KD)

Port PL
Figure 14: Sno Pin Change Interrupt Fields

fay

U WIN (- |O

Copyright 2022 Alorium Technology, LLC
18

A bit in the Flag register (SPCIFR) will be set when a pin change notification is received if the
corresponding bit in the Mask register (SPCIMSK) is set.

A bitin the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (SPCICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write
operation should be used to change individual bits.

6.3 OpenXLR8 Interrupts

Interrupts from XBs instantiated within the OpenXLR8 Module are collected and saved in the
"xIr8_pcint” module.

Register Description

OX8IFR Sno Pin Change Interrupt Flag Register
OX8ICR Sno Pin Change Interrupt Control Register
0X8MSK Sno Pin Change Interrupt Mask Register

Figure 15: OpenXLR8 Interrupt Registers

The bits in the above registers are defined by the OpenXLR8 developer and are specific to that
particular implementation.

A bit in the Flag register (OX8IFR) will be set when a pin change notification is received if the
corresponding bit in the Mask register (OX8MSK) is set.

A bitin the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (OX8ICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write
operation should be used to change individual bits.

Copyright 2022 Alorium Technology, LLC
19

6.4 Extended IRQs

The IRQs from the GPIO pin change interrupts and the OpenXLR8 interrupts are
managed by the following registers

Register Description

XIFR eXtended IRQ Flag Register

XICR eXtended IRQ Control Register
XMSK eXtended IRQ Mask Register

XACK eXtended IRQ Acknowledge Register

Figure 16: Extended IRQ Registers

The bits in the above registers correspond to the interrupt sources in the following way:

Bit Interrupt Source IRQ Num AVR Name XLR8/Sno Alias
0 SPCIFR 23 EE_READY_vect XGPIO_vect, BIXB_vect
1 OX8IFR 24 ANALOG_COMP_vect | OPENXLR8_vect

7:2 | Unused

Figure 17: Extended IRQ Fields

The AVR supports a specified set of IRQ vectors, specified by integers. The Sno Edge, and XLR8
boards in general, reassign two of the defined IRQ vectors to support the new extended GPIO pin
change interrupts and the OpenXLR8 interrupts. Those reassigned vectors are indicated above.

A bit in the Flag register (XIFR) will be set when an IRQ is received if the corresponding bit in the
Mask register (XMSK) is set and the corresponding bit in the Acknowledge (XACK) register is not
set.

A bitin the Flag register is cleared either by the corresponding bit in the Acknowledge register
being set, or by the source of the IRQ being cleared.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (XICR) is set.

When an IRQ is generated to the AVR core it will respond by setting a bit in the acknowledge
register. This will block the corresponding bit in the Flag register from being set, preventing
further IRQs of that type from being sent to the AVR core. The bit in the Acknowledge must be
cleared by software once the interrupt has been serviced and control is returned to the original
program. Bits in the Acknowledge register can be cleared by writing a one to the corresponding bit
location in the Acknowledge register

Neither the Mask register nor the Control register support bit operations, so a read-modify-write
operation should be used to change individual bits.

Copyright 2022 Alorium Technology, LLC
20

6.5 Setup and Usage

The default values for the interrupt related registers are all zeros. This disables all interrupts. In
order to enable interrupts for a pin they must be configured:

1. Set the mask bits for the pin and port that is to be enabled by writing PCMSKxx for that
port.

Set the SPCICR enable bit that corresponds to the port that is being enabled.

Set the SPCIMSK mask bit that corresponds to the port that is being enabled.

Set the XICR enable bit that corresponds to the port that is being enabled.

Set the XMSK mask bit that corresponds to the port that is being enabled.

Vi W

When an IRQ is received by the AVR core it will trigger an Interrupt Service Routine (ISR)
associated with the interrupt to be called. It will also set the bit in XACK corresponding to the
interrupt vector.

After the interrupt has been handled by the ISR the interrupts should be re-enabled by:

1. Clear the SPCIFR bit or OX8IFR bit by writing a one to it
2. Clear the XACK bit by writing a one to it

Interrupt Service Routine functions can be specified using the XLR8 IRQ aliases specified in Figure
17. Simply specify the desired XLR8 IRQ alias name in the ISR () function call.

ISR(XGPIO vect) { // Extended GPIO Port Pin Change Interrupts
// Enter ISR code
}

ISR(OPENXLR8 vect) { // OpenXLR8 Interrupts
// Enter ISR code
}

6.6 Example Interrupt Sketch

The following example sketch sets up Port G, Pin 0, for a pin change interrupt. To test this in
hardware simply start the sketch and then simply ground Port G, Pin 0 momentarily. This should
cause a pin change interrupt and the sketch will print " 1cop(): Interrupt detected... "
each time the pin changes.

L1177 00 77777777 77

// Copyright(c) Alorium Technology Inc., 2022
// ALL RIGHTS RESERVED

// s==s=ssssssssssss===
//

// File name: : snoedge_int example.ino

// Author : support@aloriumtech.com

Copyright 2022 Alorium Technology, LLC
21

// Description : Demonstrate pin change interrupts on Sno Edge

// extended GPIO port

//

L1117 7700777 7777777777777 777

// Variables to use in the ISR routine. Use volatile to make sure
// value is maintained across ISR calls
volatile bool isr found = false;

void setup() {

Serial.begin(115200);
Serial.println("========== Start snoedge int example.ino ==========");

Serial.println(" Enter setup(): Configure pin change interrupt on Port G, Pin 0")

// Enable Port G, pin 0 for pin change interrupts

PCMSKG |= (1 << MSKGO);

// Enable the SPCIFR bit for Port G to be enabled for pin change interrupts
SPCIMSK |= (1 << SPCIPG); // Set the bit for Port G in the mask reg

SPCICR |= (1 << SPCIPG); // Set the bit for Port G in the control reg

// Enable the XIFR bit for pin change interrupts

XMSK |= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the mask reg
XICR |= (1 << XIGPIO); // Set the bit for Pin Change IRQ in the control reg

Serial.println(" Enter loop(): Check for interrupt and reset after response");

}

void loop() {
// Check for ISR
if (isr found) {
Serial.print(" loop(): Interrupt detected... ");

// Code for interrupt response goes here

/7 .

// After Interrupt response, clear interrupt flag and re-enable
// IRQ by clearing the XACK bit

SPCIFR = (1 << SPCIPG); // Write one to flag bit for Port G
XACK = (1 << XIGPIO); // Write one to clear the ACK

// Reset the isr found flag so that we break out of the loop
isr_found = false;
Serial.println(" Interrupt handled");

}

// Wait a bit before checking the isr found flag again
delay(1l);
}

ISR(XGPIO vect) { // Extended GPIO Port Pin Change Interrupts
// This ISR will be involked when a pin change interrupt
// is triggered. Keep the interrupt service routine short
// by just setting a flag and returning. The flag will be
// checked in the main loop() function.
isr found = true;

I

Sample output:

Copyright 2022 Alorium Technology, LLC
22

Enter setup():
Enter loop():
loop():
loop():

Configure
Check for
Interrupt
Interrupt

pin change interrupt on Port G, Pin 0

interrupt and reset after response
detected... Interrupt handled"
detected... Interrupt handled"

Copyright 2022 Alorium Technology, LLC
23

7 Register Summary

The registers used in Sno Edge are listed below. The table is color coded to indicate whether the
registers are as defined for the ATmega328p, or whether they have been changed in some way.
The color key can be found at the bottom of the table.

Address | Name | Bit6 Bit5 Bit4 Bit3 Bit2 Bitl | BitO | Notes
Error!
(OXFF) XDINFO XBINFOAD REEE
source not
found.
(OXFE) Reserved — — — — — — — —
(OxFD) SVPWH — — — — Servo Pulse Width High Register 7.1.17
(0OxFC) SVPWL Servo Pulse Width Low Register 7.1.17
(OxFB) SVCR SVEN SVDIS SVUP SVCHAN 7.1.17
(OxFA) Reserved — — — — — — —
(0xF9) Reserved — — — — — — — —
(OxF8) Reserved — — — — — — — —
(0xF7) Reserved — — — — — — — —
(OxF6) PID_OP_L Low Byte output 7.1.16
(OxF5) PID_OP_H High Byte output 7.1.16
(OxF4) PID_PV_L Process variable low byte 7.1.16
(OxF3) PID_PV_H Process variable high byte 7.1.16
(OxF2) PID_SP_L Set point low byte 7.1.16
(OxF1) PID_SP_H Set point high byte 7.1.16
(OxFO) PID_KP_L KP coefficient low byte 7.1.16
(OXEF) PID_KP_H KD coefficient high byte 7.1.16
(OXEE) PID_KI_L KI coefficient low byte 7.1.16
(OXED) PID_KI_H Kl coefficient high byte 7.1.16
(OXEC) PID_KD_L KD coefficient low byte 7.1.16
(OXEB) PID_KD_H KD coefficient high byte 7.1.16
(OxEA) PIDCR PEDEN PIDDIS PIDUPD PIDCHAN 7.1.16
(OxE9) QERAT3 Upper 8 bits of quadrature rate data 7.1.15
(OXE8) QERAT2 Upper-middle 8 bits of quadrature rate data 7.1.15
(OxE7) QERAT1 Lower-middle 8 bits of quadrature rate data 7.1.15
(OxE6) QERATO Lower 8 bits of quadrature rate data 7.1.15
(OXE5) QECNT3 Upper 8 bits of quadrature count data 7.1.15
(OxE4) QECNT2 Upper-middle 8 bits of quadrature count data 7.1.15
(OxE3) QECNT1 Lower-middle 8 bits of quadrature count data 7.1.15
(OxE2) QECNTO Lower 8 bits of quadrature count data 7.1.15
(OxE1) Reserved = = = = = | = | = =
(OxEQ) QECR QEEN QEDIS QECLR QERATE QECHAN 7.1.15
(OxDF) Reserved — — — — — — — —
(OxDE) Reserved = = = = = = = =
(0xDD) Reserved - - - - - - - - TWAMR1
(0xDC) Reserved - - - - - - - - TWCR1
(OxDB) Reserved - - - - - - - - TWDR1
(OxDA) Reserved - - - - - - - - TWAR1
(0xD9) Reserved - - - - - - - - TWSR!
(0xD8) Reserved - - - - - - - - TWBR1
(0xD7) Reserved = = = = = = = =
(0xD6) XLR8VERT XLR8 Version Number Flags 7.1.14
(0xD5) XLR8VERH XLR8 Version Number Register High Byte 7.1.14

Copyright 2022 Alorium Technology, LLC
24

Address | Name Bit7 | Bit6 Bit5 Bit4 Bit3 Bit2 Bitl | BitO

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte 7.1.14

(0xD3) Reserved = | = | = | = | = | = | = | =

(0xD2) FCFGDAT FPGA Reconfiguration Data Register 7.1.13

(0xD1) FCFGSTS | FCFGDN 0 | FCFGFM | FCFGRDY - - | - - 7.1.13

(0xDO0) FCFGCTL = FCFGSEC = FCFGCMD FCFGEN 7.1.13

(OxCF) FCFGCID Chip ID register 7.1.13

(OxCE) Reserved - - - - - - - - UDR1

(0xCD) Reserved - - - - - - - - UBBR1H

(0xCC) Reserved - - - - - - - - UBBR1L

(0xCB) Reserved - - - - - - - - UCSR1D

(OxCA) Reserved - - - - - - - - UCSR1C

(0xC9) Reserved - - - - - - - - UCSR1B

(0xC8) Reserved - - - - - - - - UCSR1A

(0xC7) Reserved = = = = = = = =

(0xC6) UDRO USART 1/0 Data Register

(0xC5) UBRROH = = - [-] USART Baud Rate Register High

(0xC4) UBRROL USART Baud Rate Register Low

(0xC3) Reserved - - - - - - - - UCSROD
uCszo1/ UCszoo/

(0xC2) UCSROC UMSELO1 | UMSELOO | UPMO1 UPMOO USBSO UDORDO UCPHAO UCPOLO

(0xC1) UCSROB RXCIEO TXCIEO UDRIEO RXENO TXENO UCSz02 RXB80 TXB80

(0xC0) UCSROA RXCO TXCO UDREO FEO DORO UPEO U2Xx0 MPCMO

(OxBF) Reserved — — — — — — — —

(OxBE) Reserved = = = = = = = =

(0xBD) TWAMR TWAM6 TWAMS TWAM4 TWAM3 TWAM2 TWAM1 TWAMO =

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWAS TWA4 TWA3 TWA2 TWA1 TWAO TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 = TWPS1 TWPSO

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB7) Reserved = = = = = = =

(0xB6) Reserved - - - - - - - ASSR

(OxB5) Reserved — — — — — — — —

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8-bit)

(0xB1) TCCR2B FOC2A FOC2B = = WGM22 CS22 CS21 CS20

(0xB0) TCCR2A COM2A1 | COM2A0 | COM2B1 | COM2BO = = WGM21 WGM20

(OxAF) PCMSKKD | PCMSKKD7 | PCMSKKD6 | PCMSKKD5 | PCMSKKD4 | PCMSKKD3 | PCMSKKD2 | PCMSKKD1 | PCMSKKDO 7.1.4

(OXAE) PORTKD PORTKD7 PORTKD6 PORTKD5 PORTKD4 PORTKD3 PORTKD2 PORTKD1 PORTKDO 7.1.4

(0xAD) DDRKD DDRKD7 DDRKD6 DDRKD5 DDRKD4 DDRKD3 DDRKD2 DDRKD1 DDRKDO 7.1.4

(0OxAC) PINKD PINKD7 PINKD6 PINKD5 PINKD4 PINKD3 PINKD2 PINKD1 PINKDO 7.1.4

(OxAB) PCMSKKC | PCMSKKC7 | PCMSKKC6 | PCMSKKC5 | PCMSKKC4 | PCMSKKC3 | PCMSKKC2 | PCMSKKC1 | PCMSKKCO 7.1.4

(OxAA) PORTKC PORTKC7 PORTKC6 PORTKCS PORTKC4 PORTKC3 PORTKC2 PORTKC1 PORTKCO 7.1.4

(0xA9) DDRKC DDRKC7 DDRKC6 DDRKC5 DDRKC4 DDRKC3 DDRKC2 DDRKC1 DDRKCO 7.1.4

(0xA8) PINKC PINKC7 PINKC6 PINKC5 PINKC4 PINKC3 PINKC2 PINKC1 PINKCO 7.1.4

(0xA7) PCMSKKB | PCMSKKB7 | PCMSKKB6 | PCMSKKB5 | PCMSKKB4 | PCMSKKB3 | PCMSKKB2 | PCMSKKB1 | PCMSKKBO 7.1.4

(0xAB6) PORTKB PORTKB7 PORTKB6 PORTKBS PORTKB4 PORTKB3 PORTKB2 PORTKB1 PORTKBO 7.1.4

(OxA5) DDRKB DDRKB7 DDRKB6 DDRKB5 DDRKB4 DDRKB3 DDRKB2 DDRKB1 DDRKBO 7.1.4

(0xA4) PINKB PINKB7 PINKB6 PINKBS PINKB4 PINKB3 PINKB2 PINKB1 PINKBO 7.1.4

(0xA3) PCMSKKA | PCMSKKA7 | PCMSKKA6 | PCMSKKAS | PCMSKKA4 | PCMSKKA3 | PCMSKKA2 | PCMSKKA1 | PCMSKKAO 7.1.4

(0xA2) PORTKA PORTKA7 PORTKA6 PORTKAS PORTKA4 PORTKA3 PORTKA2 PORTKA1 PORTKAO 7.1.4

(0xA1) DDRKA DDRKA7 DDRKA6 DDRKAS DDRKA4 DDRKA3 DDRKA?2 DDRKA1 DDRKAO 7.1.4

(0xA0) PINKA PINKA7 PINKA6 PINKAS PINKA4 PINKA3 PINKA2 PINKA1 PINKAO 7.1.4

Copyright 2022 Alorium Technology, LLC
25

Address \ Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0x9F) PCMSKJD PCMSKID7 | PCMSKID6 | PCMSKID5 | PCMSKID4 | PCMSKID3 | PCMSKJD2 | PCMSKID1 | PCMSKIDO 7.1.3
(Ox9E) PORTID PORTID7 PORTID6 PORTJD5 PORTJD4 PORTJD3 PORTJD2 PORTJD1 PORTJDO 7.1.3
(0x9D) DDRIJD DDRIJD7 DDRJD6 DDRJD5 DDRJD4 DDRJD3 DDRJD2 DDRJD1 DDRJDO 7.1.3
(0x9C) PINJD PINKID7 PINKJD6 PINKJD5 PINKJD4 PINKJD3 PINKJD2 PINKJD1 PINKJDO 7.1.3
(0x9B) PCMSKIC PCMSKIC7 | PCMSKIC6 | PCMSKIC5 | PCMSKIC4 | PCMSKIC3 | PCMSKIC2 | PCMSKIC1 | PCMSKICO 7.1.3
(0x9A) PORTIC PORTIC7 PORTIC6 PORTIJC5 PORTIC4 PORTJC3 PORTJC2 PORTJC1 PORTICO 7.1.3
(0x99) DDRIJC DDRIC7 DDRIJC6 DDRIC5 DDRIJC4 DDRJC3 DDRJC2 DDRJC1 DDRJCO 7.1.3
(0x98) PINJC PINKIC7 PINKIC6 PINKIC5 PINKIC4 PINKIC3 PINKIC2 PINKIC1 PINKJCO 7.1.3
(0x97) PCMSKIB PCMSKIB7 | PCMSKIB6 | PCMSKIB5 | PCMSKIB4 | PCMSKIB3 | PCMSKIB2 | PCMSKIB1 | PCMSKIBO 7.1.3
(0x96) PORTJB PORTIB7 PORTJB6 PORTJBS PORTJB4 PORTJB3 PORTJB2 PORTJB1 PORTJBO 7.1.3
(0x95) DDRJB DDRIJB7 DDRJB6 DDRJB5 DDRJB4 DDRJB3 DDRJB2 DDRJB1 DDRJBO 7.1.3
(0x94) PINJB PINJB7 PINJB6 PINJBS PINJB4 PINJB3 PINJB2 PINJB1 PINJBO 7.1.3
(0x93) PCMSKIJA PCMSKJA7 | PCMSKJA6 | PCMSKIAS | PCMSKIA4 | PCMSKJA3 | PCMSKJA2 | PCMSKJA1 | PCMSKIAO 7.1.3
(0x92) PORTJA PORTJA7 PORTJA6 PORTJAS PORTJA4 PORTJA3 PORTJA2 PORTJA1 PORTJAO 7.1.3
(0x91) DDRJA DDRJA7 DDRJAG6 DDRJAS DDRJA4 DDRJA3 DDRJA2 DDRJA1 DDRJAO 7.1.3
(0x90) PINJA PINJA7 PINJA6 PINJAS PINJA4 PINJA3 PINJA2 PINJA1 PINJAO 7.1.3
(Ox8F) PCMSKPL = = = = PCMSKPL3 | PCMSKPL2 | PCMSKPL1 | PCMSKPLO 7.1.5
(Ox8E) PORTPL = = = = PORTPL3 PORTPL2 PORTPL1 PORTPLO 7.1.5
(0x8D) DDRPL = = = = DDRPL3 DDRPL2 DDRPL1 DDRPLO 7.1.5
(0x8C) PINPL = = = = PINPL3 PINPL2 PINPL1 PINPLO 7.1.5
(0x8B) OCR1BH Timer/Counterl — Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counterl — Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counterl — Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counterl — Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counterl — Input Capture Register High Byte

(0x86) ICR1L Timer/Counterl — Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counterl — Counter Register High Byte

(0x84) TCNTIL Timer/Counterl — Counter Register Low Byte

(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B = = = = = =

(0x81) TCCR1B ICNC1 ICES1 = WGM13 | WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 | COM1A0 | COM1B1 | COM1BO = = WGM11 | WGM10

(Ox7F) Reserved - - - - - - - - DIDR1
(Ox7E) DIDRO = = ADC5D ADCA4D ADC3D ADC2D ADC1D ADCOD

(0x7D) XLR8ADCR | AD12EN = = = = = = = 7.1.11
(0x7C) ADMUX REFS1 REFSO ADLAR = MUX3 MUX2 MUX1 MUXO0

(0x7B) ADCSRB = - MUX5 = = ADTS2 ADTS1 ADTSO ACME
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO

(0x79) ADCH ADC Data Register High byte

(0x78) ADCL ADC Data Register Low byte

(0x77) Reserved - - - - - - - -

(0x76) Reserved - - - - - - - -

(0x75) Reserved - - - - - - - -

(0x74) Reserved - - - - - - - -

(0x73) SPCIMSK = = SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10
(0x72) SPCIFR = = SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10
(0x71) SPICR = = SPCIPL SPCIPK SPCIPJ SPCIPG SPCIPE SPCIPA 7.1.10
(0x70) TIMSK2 = = = = = OCIE2B OCIE2A TOIE2

(Ox6F) TIMSK1 = = ICIE1 = = OCIE1B OCIE1A TOIE1

(Ox6E) TIMSKO = = = = = OCIEOB OCIEOA TOIEO

(0x6D) PCMSK2 PCINT23 | PCINT22 | PCINT21 | PCINT20 | PCINT19 | PCINT18 | PCINT17 | PCINT16

(0x6C) PCMSK1 = PCINT14 | PCINT13 | PCINT12 | PCINT11 | PCINT10 PCINTS PCINT8

(Ox6B) PCMSKO PCINT7 PCINT6 PCINTS PCINT4 PCINT3 PCINT2 PCINT1 PCINTO

(0x6A) OX8MSK 0OX817 OX816 OX8I5 0OX814 0OX813 0OX812 0OX8I1 0OX810 7.1.9

Copyright 2022 Alorium Technology, LLC
26

Address \ Name Bit7 Bit 6 Bit 1 Bit 0
(0x69) EICRA = = = = ISC11 ISC10 ISCO1 ISCO0
(0x68) PCICR = = = = = PCIE2 PCIE1 PCIEO
(0x67) OX8IFR 0X8l17 0X816 0OX8l15 0X8l4 0X8I13 0X8I12 0X8l1 0X8I0 7.1.9
(0x66) OX8ICR 0OXa817 OX816 OX8I5 0OX814 0OX813 0OX812 0OX8I1 0OX810 7.1.9
(0x65) XACK = = = = = = XIOX8 XIGPIO 7.1.8
(0x64) PRR - - - PRINTOSC - - - -
(0x63) XMSK = = = = = = XIOX8 XIGPIO 7.1.8
(0x62) XIFR = = = = = = XIOX8 XIGPIO 7.1.8
(0x61) XICR = = = = = = XIOX8 XIGPIO 7.1.8
(0x60) WDTCSR WDIF WNDIE WDP3 WDCE WDE WDP2 WDP1 WDPO

0x3F(0x5F) SREG | T H S Vv N Z C

0x3E(Ox5E) SPH = = = = SP11 SP10 SP9 SP8

0x3D(0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO

0x3C(0x5C) Reserved - - - - - - - -

0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte 7.1.6

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte 7.1.6

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte 7.1.6

0x38(0x58) XFRO XLR8 Function (floating point) 32 bit Result Low Byte 7.1.6

0x37(0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36(0x56) Reserved - - - - - - - -

0x35(0x55) Reserved - - - - - - - -

0x34(0x54) MCUSR = = = = WDRF - EXTRF PORF

0x33(0x53) PCMSKG | PCMSKG7 | PCMSKG6 | PCMSKG5 | PCMSKG4 | PCMSKG3 | PCMSKG2 | PCMSKG1 | PCMSKGO 7.1.2

0x32(0x52) PCMSKE PCMSKE7 | PCMSKE6 | PCMSKES5 | PCMSKE4 | PCMSKE3 | PCMSKE2 | PCMSKE1 | PCMSKEO 7.1.2

0x31(0x51) PCMSKA | PCMSKA7 | PCMSKA6 | PCMSKAS | PCMSKA4 | PCMSKA3 | PCMSKA2 | PCMSKA1 | PCMSKAO 7.1.2

0x30(0x50) Reserved - - - - - - - - ACSR

Ox2F(0x4F) Reserved - - - - - - - - ACSRB

O0x2E(Ox4E) SPDR SPI Data Register

0x2D(0x4D) SPSR SPIF WCOL = = = = = SPI2X

0x2C(0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

0x2B(0x4B) GPIOR2 General Purpose 1/0O Register 2

0x2A(0x4A) GPIOR1 General Purpose 1/0O Register 1

0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader 7.1.7

0x28(0x48) OCROB Timer/Counter0 Output Compare Register B

0x27(0x47) OCROA Timer/Counter0 Output Compare Register A

0x26(0x46) TCNTO Timer/CounterO0 (8-bit)

0x25(0x45) TCCROB FOCOA FOCOB = = WGMO02 CS02 CS01 CS00

0x24(0x44) TCCROA COMOA1 | COMOAO | cOMOB1 | cOMOBO = = WGMO01 WGMO00

0x23(0x43) GTCCR TSM = = = = = PSRASY PSRSYNC

0x22(0x42) EEARH EEPROM Address Register High Byte

0x21(0x41) EEARL EEPROM Address Register Low Byte

0x20(0x40) EEDR EEPROM Data Register

0x1F(0x3F) EECR - - EEPM1 EEPMO | EERIE | EEMPE EEPE EERE

0x1E(Ox3E) GPIORO General Purpose 1/O Register 0

0x1D(0x3D) EIMSK = = = = = = INT1 INTO

0x1C(0x3C) EIFR = = = = = = INTF1 INTFO

0x1B(0x3B) PCIFR = = = = = PCIF2 PCIF1 PCIFO

O0x1A(0x3A) Reserved - - - - - - - -

0x19(0x39) Reserved - - - - - - - - TIFR4

0x18(0x38) Reserved - - - - - - - - TIFR3

0x17(0x37) TIFR2 = = = = = OCF2B OCF2A TOV2

0x16(0x36) TIFR1 = = ICF1 = = OCF1B OCF1A TOV1

0x15(0x35) TIFRO = = = = = OCFOB OCFOA TOVO

0x14(0x34) PORTG PORTG7 PORTG6 PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTGO 7.1.2

Copyright 2022 Alorium Technology, LLC
27

Address \ Name Bit 6 Bit 5 Bit 1 Bit O Notes

0x13(0x33) DDRG DDG7 DDG6 DDG5 DDG4 DDG3 DDG2 DDG1 DDGO 7.1.2
0x12(0x32) PING PING7 PING6 PING5 PING4 PING3 PING2 PING1 PINGO 7.1.2
0x11(0x31) XFSTAT XFDONE XFERR = = = = = = 7.1.6
0x10(0x30) XFCTRL = XFSTART = = = XFCMD 7.1.6
0xOF(0x2F) Reserved — — — — — — — —
Ox0E(Ox2E) PORTE = = PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO 7.1.2
0x0D(0x2D) DDRE = = DDES DDE4 DDE3 DDE2 DDE1 DDEO 7.1.2
0x0C(0x2C) PINE = = PINES PINE4 PINE3 PINE2 PINE1 PINEO 7.1.2
0x0B(0x2B) PORTD PORTD?7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO
0x0A(0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
0x09(0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO
0x08(0x28) PORTC = PORTC6 PORTC5S PORTC4 PORTC3 PORTC2 PORTC1 PORTCO
0x07(0x27) DDRC = DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO
0x06(0x26) PINC = PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO
0x05(0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO
0x04(0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO
0x03(0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
0x02(0x22) PORTA = = PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO 7.1.2
0x01(0x21) DDRA = = DDAS DDA4 DDA3 DDA2 DDA1 DDAO 7.1.2
0x0(0x20) PINA = = PINAS PINA4 PINA3 PINA2 PINA1 PINAO 7.1.2

= unchanged from ATmega328p

= Reserved registers that are best not used for XLR8 blocks because ATmega328PB uses them

= ATmega328p registers not implemented in XLR8

= Some differences in XLR8 compared to ATmega328p

= new registers for XLR8 Blocks

= Built-in XB registers. Not reserved in OpenXLR8 and can be used for OpenXLR8 registers

= Sno Edge specific registers

Figure 18: Sno Edge Register Summary

7.1 Sno Edge and XB Register Descriptions

7.1.1 Register Access Definitions

In Figure 19: Register Access Definitions, the abbreviations used in the following CSR definitions
are defined.

Abbreviation \ Meaning

RW Read and Write Access

R Read Only

W Write Only

RW1C Read and Write, Write 1 to Clear
RW1CS Read and Write, Write 1 to Clear, Sticky
RWS Read and Write, Sticky

Copyright 2022 Alorium Technology, LLC
28

Figure 19: Register Access Definitions

Sticky bits are not initialized or modified by hot reset or function level reset.

7.1.2 PortsA,Eand G

Address \ Name

Bit7 | Bit6 | Bit5

Bit4

Bit 3

Bit 2

Bit 1

BitO

Notes

0x31(0x51) PCMSKA | PCMSKA7 | PCMSKA6 | PCMSKAS | PCMSKA4 | PCMSKA3 | PCMSKA2 | PCMSKA1 | PCMSKAO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
0x02(0x22) | PORTA PORTA7 PORTA6 PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
0x01(0x21) | DDRA DDRA7 DDRAG6 DDRAS DDRA4 DDRA3 DDRA2 DDRA1 DDRAO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
0x0(0x20) | PINA PINA7 PINA6 PINAS PINA4 PINA3 PINA2 PINA1 PINAO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0X32(OX52)| PCMSKE PCMSKE7 | PCMSKE6 | PCMSKE5 | PCMSKE4 | PCMSKE3 | PCMSKE2 | PCMSKE1 | PCMSKEO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
OxOE(Ox2E) | PORTE PORTE7 PORTE6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
0x0D(0x2D) | DDRE DDRE7 DDRE6 DDRES DDRE4 DDRE3 DDRE2 DDRE1 DDREO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A 0 0 0 0 0 0
0x0C(0x2C) | PINE PINE7 PINE6 PINES PINE4 PINE3 PINE2 PINE1 PINEO
Read/Write N/A N/A RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x33(0x53)| PCMSKG | PCMSKG7 | PCMSKG6 | PCMSKG5 | PCMSKG4 | PCMSKG3 | PCMSKG | PCMSKG | PCMSKGO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x14(0x34) | PORTG PORTG7 PORTG6 PORTG5 PORTG4 PORTG3 PORTG PORTG PORTGO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x13(0x33) | DDRG DDRG7 DDRG6 DDRG5 DDRG4 DDRG3 DDRG DDRG DDRGO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x12(0x32) | PING PING7 PING6 PING5 PING4 PING3 PING PING PINGO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

7.1.3 PortsJA,JB,JC,and JD

Address Name

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes
0x93 PCMSKJA | PCMSKIA7 | PCMSKIA6 | PCMSKIAS | PCMSKIA4 | PCMSKIA3 | PCMSKIA2 | PCMSKIAL | PCMSKIAO
Read/Write RW RW RW RW RW RW RW RW

Copyright 2022 Alorium Technology, LLC

29

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 1 Bit O Notes

Initial Value 0 0 0 0 0 0 0 0
0x92 | PORTIJA PORTIJA7 PORTJA6 PORTJAS PORTJA4 PORTJA3 PORTJA2 PORTJA1 PORTJAO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x81 | DDRJA DDRIJA7 DDRJA6 DDRJAS DDRIJA4 DDRJA3 DDRJA2 DDRJA1 DDRJAO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x90 | PINJA PINJA7 PINJA6 PINJAS PINJA4 PINJA3 PINJA2 PINJA1 PINJAO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x97 | PCMSKJB PCMSKJB7 | PCMSKIB6 | PCMSKIB5 | PCMSKIB4 | PCMSKIB3 | PCMSKIB2 | PCMSKIB1 | PCMSKIBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x96 | PORTJB PORTIB7 PORTJB6 PORTJB5 PORTJB4 PORTJB3 PORTJB2 PORTJB1 PORTJBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x95 | DDRIJB DDRIB7 DDRIJB6 DDRIJB5 DDRJB4 DDRJB3 DDRJB2 DDRJB1 DDRJBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x94 | PINJB PINJB7 PINJB6 PINJBS PINJB4 PINJB3 PINJB2 PINJB1 PINJBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x9B | PCMSKIC | PCMSKIC7 | PCMSKIC6 | PCMSKICS | PCMSKIC4 | PCMSKIC3 | PCMSKIC2 | PCMSKIC1 | PCMSKICO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Ox9A | PORTIC PORTIC7 PORTIC6 PORTJC5 PORTIC4 PORTJC3 PORTJC2 PORTJC1 PORTJCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x99 | DDRIC DDRIC7 DDRJC6 DDRIJC5 DDRJC4 DDRJC3 DDRJC2 DDRJC1 DDRJCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x98 | PINJC PINJC7 PINJC6 PINJC5 PINJC4 PINJC3 PINJC2 PINJC1 PINJCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x9F | PCMSKID | PCMSKID7 | PCMSKID | PCMSKID | PCMSKID4 | PCMSKID3 | PCMSKID2 | PCMSKID1 | PCMSKIDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Ox9E | PORTJD PORTID7 PORTID PORTID PORTID4 PORTID3 PORTID2 PORTID1 PORTIDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x9D | DDRID DDRID7 DDRID DDRID DDRJD4 DDRJD3 DDRJD2 DDRJD1 DDRJDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x9C | PINJD PINJD7 PINJD PINJD PINJD4 PINJD3 PINJD2 PINJD1 PINJDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Copyright 2022 Alorium Technology, LLC
30

7.1.4 Ports KA, KB, KC, and KD

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes
0x93 PCMSKKA | PCMSKKA7 | PCMSKKA6 | PCMSKKAS | PCMSKKA4 [PCMSKKA3 | PCMSKKA2 | PCMSKKA1 | PCMSKKAOQ
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x92 | PORTKA PORTKA7 PORTKA6 PORTKAS PORTKA4 PORTKA3 PORTKA2 PORTKA1 PORTKAO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x81 | DDRKA DDRKA7 DDRKA6 DDRKAS DDRKA4 DDRKA3 DDRKA2 DDRKA1 DDRKAO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x90 | PINKA PINKA7 PINKA6 PINKAS PINKA4 PINKA3 PINKA2 PINKA1 PINKAO
Read/Write RW RW RW RW RW RW RW RW

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x97 | PCMSKKB PCMSKKB7 | PCMSKKB6 | PCMSKKB5 [PCMSKKB4 | PCMSKKB3 | PCMSKKB2 | PCMSKKB1 [PCMSKKBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x96 | PORTKB PORTKB7 PORTKB6 PORTKBS5 PORTKB4 PORTKB3 PORTKB2 PORTKB1 PORTKBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x95 | DDRKB DDRKB7 DDRKB6 DDRKB5 DDRKB4 DDRKB3 DDRKB2 DDRKB1 DDRKBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x94 | PINKB PINKB7 PINKB6 PINKB5 PINKB4 PINKB3 PINKB2 PINKB1 PINKBO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x9B | PCMSKKC PCMSKKC7 | PCMSKKC6 | PCMSKKC5 [PCMSKKC4 | PCMSKKC3 | PCMSKKC2 | PCMSKKC1 [PCMSKKCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Ox9A | PORTKC PORTKC?7 PORTKC6 PORTKC5 PORTKC4 PORTKC3 PORTKC2 PORTKC1 PORTKCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x99 | DDRKC DDRKC7 DDRKC6 DDRKC5 DDRKC4 DDRKC3 DDRKC2 DDRKC1 DDRKCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x98 | PINKC PINKC7 PINKC6 PINKC5 PINKC4 PINKC3 PINKC2 PINKC1 PINKCO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Ox9F | PCMSKKD PCMSKKD7 | PCMSKKD6 | PCMSKKD5 | PCMSKKD4 | PCMSKKD3 | PCMSKKD2 | PCMSKKD1 | PCMSKKDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Ox9E | PORTKD PORTKD7 PORTKD6 PORTKD5 PORTKD4 PORTKD3 PORTKD2 PORTKD1 PORTKDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x9D | DDRKD DDRKD7 DDRKD6 DDRKD5 DDRKD4 DDRKD3 DDRKD2 DDRKD1 DDRKDO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x9C | PINKD PINKD7 PINKD6 PINKD5S PINKD4 PINKD3 PINKD2 PINKD1 PINKDO
Read/Write RW RW RW RW RW RW RW RW

Copyright 2022 Alorium Technology, LLC

31

| Initial Value N/A NNA] NA] O NA] NA] NA] NA N/A
7.1.5 PortPL
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
Ox8F PCMSKPL PCMSKPL7 | PCMSKPL6 | PCMSKPL5 | PCMSKPL4 | PCMSKPL3 | PCMSKPL2 | PCMSKPL1 | PCMSKPLO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
Ox8E | PORTPL PORTPL7 PORTPL6 PORTPLS PORTPL4 PORTPL3 PORTPL2 PORTPL1 PORTPLO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x8D | DDRPL DDRPL7 DDRPL6 DDRPL5 DDRPL4 DDRPL3 DDRPL2 DDRPL1 DDRPLO
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
0x8C | PINPL PINPL7 PINPL6 PINPLS PINPL4 PINPL3 PINPL2 PINPL1 PINPLO
Read/Write RW RW RW RW RW RW RW RW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

7.1.6 XFCTRL, XFSTAT, XFRO, XFR1, XFR2, XFR3— Floating Point XB Registers

Address

Name

Bit 7

Bit 6

Bit 5 Bit 4

Bit 3 Bit 2

Bit 1

0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte

0x38(0x58) XFRO XLR8 Function (floating point) 32 bit Result Low Byte
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

0x11(0x31) | XFSTAT | XFDONE | XFERR = = = = = =
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

0x10(0x30) | XFCTRL = XFSTART = = = XFCMD
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

A floating-point calculation is started by writing the XFSTART bit in the XFCTRL register, along
with the desired operation in the XFCMD field (1=add, 2=multiply, 3=divide). Operands come

directly from the AVR’s general-purpose register file (using our library ensures they will be in the
right place). When the operation is done, the result appears in the XFR0/1/2/3 registers and the
XFDONE status bit is set. If an unsupported XFCMD is used, the XFERR bit is also sets, allowing
software to revert to using a software-based calculation. The XFSTAT register auto-clears when it
is read, or when the next operation is started via writing the XFSTART bit.

The easiest way to use these registers is with the XLR8Float library
(https://github.com/AloriumTechnology/XLR8Float).

7.1.7 CLKSPD - Clock Speed Register

Address Name Bit 7 ‘ Bit 6 ‘ Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes
0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
0x29(0x49) | CLKSPD - - - - - - - 0SCOUT

Copyright 2022 Alorium Technology, LLC
32

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes

Read/Write " " " " W " " "
Initial Value N/A N/A N/A N/A N/A N/A N/A 0
(0x64) | PRR = = = = PRINTOSC = = =
Read/Write R R R R RW R R R
Initial Value 0 0 0 0 0 0 0 0

The clock speed register holds a constant value that represents the value to be programmed into
the UBRROL register to run the UART at a baud rate of 115200. It is used by the modified
bootloader to allow it to run correctly regardless of whether Sno Edge is running 16 MHZ, 32MHz,
or some other speed.

Sno Edge includes an on-chip oscillator that currently isn’t being used, but a divide-by-1024
version of it can be output to digital pin 8 by writing bit 0 of the CLKSPD register high. This is a
write-only operation, it does not change the value that is read from the CLKSPD register. The
internal oscillator can be turned off entirely by setting the PRINTOSC bit of the PRR register. The
other bits of this register are currently unused.

7.1.8 XICR, XIFR, XMSK, XACK — Extended IRQ

Address Name Bit7 | Bit6 Bit5 Bit4 Bit3 Bit2 |

(0x65) XACK = XIOX8 XIGPIO
Read/Write R R R R R R RW1C RW1C
Initial Value 0 0 0 0 0 0 0 0

(0x63) | XMsk - XIOX8 XIGPIO
Read/Write R R R R R R RW RW
Initial Value 0 0 0 0 0 0 0 0

(0x62) | XIFR = XIOX8 XIGPIO
Read/Write R R R R R R RW1C RW1C
Initial Value 0 0 0 0 0 0 0 0

(0x61) | XICR = XIOX8 XIGPIO
Read/Write R R R R R R RW RW
Initial Value 0 0 0 0 0 0 0 0

A bit in the Flag register (XIFR) will be set when an IRQ is received if the corresponding bit in the
Mask register (XMSK) is set and the corresponding bit in the Acknowledge (XACK) register is not
set.

A bitin the Flag register is cleared either by the corresponding bit in the Acknowledge register
being set, or by the source of the IRQ being cleared.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (XICR) is set.

When an IRQ is generated to the AVR core it will respond by setting a bit in the acknowledge
register. This will block the corresponding bit in the Flag register from being set, preventing
further IRQs of that type from being sent to the AVR core. The bit in the Acknowledge must be
cleared by software once the interrupt has been serviced and control is returned to the original
program. Bits in the Acknowledge register can be cleared by writing a one to the corresponding bit
location in the Acknowledge register

Copyright 2022 Alorium Technology, LLC
33

7.1.9 OXB8ICR, OX8IFR, OX8MSK — OpenXLR8 Interrupts

Addre ame : Bit 6 B Bit 4 B B : Bit O ote
(0x6A) OX8MSK | 0x8lI7 0X8l6 0X8I5 0X8l4 0x8I3 0x8I2 0X8I1 0xX8l0
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
(0x67) | OX8IFR 0x817 0X8l6 oxsls | oxsl4 | oxsi3 | oxsi2 0x8l1 0X8I0
Read/Write RW1C RW1C RW1C RW1C RWiC | RWIC | RWIC RW1C
Initial Value 0 0 0 0 0 0 0 0
(0x66) | OxsICR | ox8I7 0x8l6 oxsls | oxsl4 | oxsi3 | oxsi2 0x8l1 0xX8l0
Read/Write RW RW RW RW RW RW RW1C RW1C
Initial Value 0 0 0 0 0 0 0 0

A bit in the Flag register (OX8IFR) will be set when a pin change notification is received if the
corresponding bit in the Mask register (OX8MSK) is set.

A bitin the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (OX8ICR) is set.

7.1.10 SPICR, SPIFR, SPIMSK - Sno Pin Change Interrupts

Addre ame : Bit 6 : Bit 4 : : : Bit O ote
(0x73) SPIMSK - - SPCIPL | SPCIPK | SPCIPJ | SPCIPG | SPCIPE | SPCIPA
Read/Write R R RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
(0x72) | SPIFR - - SPCIPL | SPCIPK | SPCIP) | SPCIPG | SPCIPE | SPCIPA
Read/Write R R RW1C RW1C RW1C RW1C RW1C RW1C
Initial Value 0 0 0 0 0 0 0 0
(0x71) | SPICR - - SPCIPL | SPCIPK | SPCIPJ | SPCIPG | SPCIPE SPCIPA
Read/Write R R RW RW RW RW RW1C RW1C
Initial Value 0 0 0 0 0 0 0 0

The bits in the above registers correspond to the ports in the following way. Notice that in the
figure above and in Figure 14: Sno Pin Change Interrupt Fields, the four Jx ports and the four Kx
ports are combined into single bits.

A bit in the Flag register (SPCIFR) will be set when a pin change notification is received if the
corresponding bit in the Mask register (SPCIMSK) is set.

A bitin the Flag register is cleared via software by writing a one to the bit.

A bit set in the Flag register will cause an IRQ to be generated if the corresponding bit in the
Control register (SPCICR) is set.

Neither the Mask register nor the Control register support bit operations, so a read-modify-write
operation should be used to change individual bits.

Copyright 2022 Alorium Technology, LLC
34

7.1.11 XLR8S8ADCR - Sno Edge ADC Control Register

Address Name Bit7 | Bit6 | Bit5 Bit4 Bit3 | Bit2 Bitl Bit0 | Notes

(0x7D) XLR8ADCR | AD12EN - - - - - - -
Read/Write RW R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

The AD12EN bit enables the ADC to run in 12 bit mode. The results reported in the ADCL and
ADCH registers when running with ADLAR=0 can range from 0-4095, and when running with
ADLAR=1, bits 5:4 of ADCL will include the least significant bits of the 12 bit ADC result. When
running in 10 bit mode, the result is truncated (not rounded) from the 12 bit result.

7.1.12 FCFGCID - Chip ID Register

Address Name Bit7 | Bit6 | Bit5 Bit4 Bit3 | Bit2 Bitl Bit0 | Notes

(OxCF) FCFGCID Chip ID register
Read/Write R R R R R R R R write-reset
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The chip ID register is a read-only register that provides chip ID information. Multiple bytes of
chip ID information are available and each read presents the next byte. Writing the register (with
any value) resets the read pointer back to the beginning (and does not store the write data in any

way).

7.1.13 FCFGDAT, FCFGSTS, FCFGCTL — FPGA Reconfiguration Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes

(0xD2) FCFGDAT FPGA Reconfiguration Data Register
Read/Write " " " " " " " "
Initial Value 0 0 0 0 0 0 0 0

(0xD1) | FCFGSTS FCFGDN FCFGOK | FCFGFAIL | FCFGRDY = = = =
Read/Write RW1C RW1C RW1C R R R R R
Initial Value 0 0 0 0 0 0 0 0

(0xDO) | FCFGCTL — FCFGSEC — FCFGCMD FCFGEN
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

These registers are used during reconfiguration of the FPGA and are not intended for customer
use. FCFGEN auto-clears after a reconfiguration is complete. The data register is a write-only
register.

7.1.14 XLR8VERL, XLR8VERH, XLR8VERT - Version Number Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes

(0xD6) XLR8VERT XLR8 Version Number Flags

(0xD5) XLR8VERH XLR8 Version Number Register High Byte

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The version number register provides the FPGA design revision, while the version flags register
indicates if the build had a mixed or modified version. The registers have a constant value for a

Copyright 2022 Alorium Technology, LLC
35

particular design, but the value changes for each version. The easiest way to use these registers is
with the XLR8Info library (https://github.com/AloriumTechnology/XLR8Info).

7.1.15 XLR8Quad — XLR8 Quadrature

Address Name Bit7 | Bit6 | Bit5 Bit4 Bit3 | Bit2 Bitl Bit0 | Notes

(OxE9) QERAT3 Upper 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OxES8) ERCAITZ Upper-middle 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OxE7) | QERAT1 Lower-middle 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OxXE6) | QERATO Lower 8 bits of quadrature rate data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OXES5) | QECNT3 Upper 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OxE4) | QECNT2 Upper-middle 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
(OxE3) | QECNT1 Lower-middle 8 bits of quadrature count data

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

(OxE2) | QECNTO Lower 8 bits of quadrature count data
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
(OXEQ) | QECR QEEN QEDIS QECLR QERATE QECHAN
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

To start a channel typically the channel is reset first, then the control register with the desired
channel indicated and both the enable and update bits set.

7.1.16 XLR8PID — XLR8 PID

Address Name Bit 7 ‘ Bit 6 ‘ Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes

(OxF6) PID_OP_L Low Byte output
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
(0xF5) | PID_OP_H High Byte output
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
(OxF4) | PID_PV_L Process variable low byte
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
(OxF3) | PID_PV_H Process variable high byte
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
(OxF2) | PID_SP_L Set point low byte

Copyright 2022 Alorium Technology, LLC
36

Address Name Bit 5 Bit 4 Bit 3 Bit O Notes

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(0xF1) | PID_SP_H Set point high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(OxFO) | PID_KP_L KP coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(OXEF) | PID_KP_H KP coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(OxEE) | PID_KI_L KI coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(OxED) | PID_KI_H Kl coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(0xeC) | PID_KD_L KD coefficient low byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(0xEB) | PID_KD_H KD coefficient high byte

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0
(0xEA) | PIDCR PEDEN PIDDIS | PIDUPD PIDCHAN

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

To start a channel typically the channel is reset first, then the control register with the desired
channel indicated and both the enable and update bits set.

7.1.17 SVPWH, SVPWL, SVCR - Servo XB Registers

Address Name Bit 7 ‘ Bit 6 ‘ Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Notes

(OxFD) SVPWH = = = = Servo Pulse Width High Register
Read/Write R R R R RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

(OxFC) | SVPWL Servo Pulse Width Low Register
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

(0xFB) | SVCR SVEN SVDIS SvVUP SVCHAN
Read/Write RW W W RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

The servo data registers SVPWH and SVPWL represent the desired servo pulse width in
microseconds. The value is programmed to the channel selected by SVCHAN when the SVCR
register is written with the update (SVUP) bit set. The channel can be enabled to begin at the same
time by also setting the enable (SVEN) bit. A channel is disabled by writing SVCR with the desired
channel in the SVCHAN field, the SVEN bit clear and the SVDIS set. The pulse width of a channel
can be changed without changing its enabled/disabled status by leaving the SVEN and SVDIS bits
clear when writing the SVCR register. SVDIS and SVUP are strobes and will always read zero.
Reading SVEN will give the current enabled/disabled status of the channel read in the SVCHAN
field. The value of SVCHAN corresponds to the Arduino pin to use (i.e. 0=RX, 1=TX, 2=D2, ...,

Copyright 2022 Alorium Technology, LLC
37

14=A0, etc.). Multiple pins can be driven simultaneously, each with a different pulse width...with a
small limitation. The 32 possible values of SVCHAN directly alias to the 16 available timers (e.g.
channels 1 and 17 could both be enabled, but they would always have the same pulse width of
whichever one was programmed most recently). The easiest way to use these registers is with the
XLR8Servo library (https://github.com/AloriumTechnology/XLR8Servo).

7.2 Using the Sno Edge Registers in Software

The Sno Edge registers can be accessed from Arduino sketches in much the same way as standard
Arduino registers. The Sno Edge has been defined as a “variant” in the Arduino IDE so its registers
are available to the Arduino compiler. Simply use the register names and register field names as
defined in Figure 18. No #include statements required to pull in the register definitions. Just select
the Sno Edge board in the Arduino IDE under Tools->Board.

The register names are defined using the _SFR_MEMS8(), such that using the name causes the
register to be read or written, depending on the context.

The field names are defined as a number between 0 and 7, to indicate which bit in the register the
field starts at. For multiple bit fields this will indicate the low order bit of the field. This makes it

simple to use left shift operators to specify bit positions.

The values of registers can be read by specifying their names on the right side of an equal sign.

// Read value of the XICR register into the “varl” variable
varl = XICR;

To write registers use the name of the register on the left side of the equal sign.

// Write the value of the “var2” variable to the XICR register
XICR = var2;

To use a field name to specify a bit location, use the left shift operator.

// Shift a 1 to the bit position of the XIOX8 field in the XICR register
// and write it to the XICR register. All other bits in the register will
// be set to 0.

XICR = (1 << XIOX8);

To preserve the other bits in the register from changes while setting/clearing a specific bit, use the
compound assignment operators |= or &=.

Copyright 2022 Alorium Technology, LLC
38

// Set the bit at the XIOX8 location in the XICR register while preserving
// the state of all other bits.
XICR |= (1 << XIOX8);

// Clear the bit at the XIOX8 location in the XICR register while preserving
// the state of all other bits.
XICR &= ~(1 << XIOX8);

To set multiple bits in a register, multiple left shift operations can be bit-wise OR’d together.

// Set both the XIOX8 and the XIGPIO bits in the XICR register.
XICR = (1 << XIOX8) | (1 << XIGPIO);

Multibit fields can be left shifted the same as single bit fields since the field name is set to the
lowest order bit in the field. Care must be taken that field values are within the max value of the
field or run the risk of fields overlapping during the shift operations.

// Shift the values for the fields of the FCFGCTL register to the correct
// offsets in the register and write to the FCFGCTL register. Though these
// are multi-bit fields, the field definitions are set to shift the values
// to the correct location.

FCFGCTL = (var3 << FCFGSEC) | (var4 << FCFGCMD) | (var5 << FCFGGEN);

Another way to make accessing the fields of the registers is to create struct types to define them
and then access the subfields. Using the FCFGCTL register as an example:

// Define a struct type for the FCFGCTL register
typedef struct {
unsigned int fcfgen l; // [0] - Enable
unsigned int fcfgcmd 2; // [2:1] - Command
unsigned int rsrv3 : 1; // [3] - unused
unsigned int fcfgsec 3; // [6:4] = Sec
unsigned int rsrv7 l; // [7] - unused
} fcfgectl t;
fcfgetl t fcfgcetl; // Create fcfgctl as a struct of type fcfgctl t
// Read register fields
fcfgctl = FCFGCTL; // Read the FCFGCTL reg into the struct
i = fcfgctl.fcfgsec; // set i to the value of the fcfgsec field

Copyright 2022 Alorium Technology, LLC
39

// Write register fields
fcfgctl.fcfgemd = 0x2; // Set the value of a field
FCFGCTL = fcfgctl; // Write the struct to the register

Copyright 2022 Alorium Technology, LLC
40

8 Schematics and Other Resources

Schematics, Pin Map, and Product Brief Schematics, product brief, and a standalone pin map
document are available on the resources page for Sno Edge here:

e Product Brief

e Pin Map
e Schematics

Copyright 2022 Alorium Technology, LLC
41

9 Credits

Some code is used and modified from the AVR core written by Ruslan Lepetenok
(lepetenokr@yahoo.com) that is available at http://opencores.org/project,avr core.

Ruslan’s AVR core does not contain copyright or license notices, but we certainly wish to
recognize its contribution to this project.

The I12C module builds upon the I2C core written by Richard Herveille (richard@asics.ws) that is
available at http://opencores.org/project,i2c. The [2C core was released under BSD license with

the following copyright statement:
Copyright (C) 2001 Richard Herveille
richard@asics.ws

This source file may be used and distributed without
restriction provided that this copyright statement is not
removed from the file and that any derivative work contains
the original copyright notice and the associated disclaimer

THIS SOFTWARE IS PROVIDED “AS IS" AND WITHOUT ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright 2022 Alorium Technology, LLC
42

10 Appendix A — Arduino IDE Installation and Running Test Program

10.1 Installing Arduino IDE

The first step in setting up your computer to connect to and program the Sno Edge is to install the
standard Arduino IDE software. Follow the instructions below to install the Arduino IDE on your
computer.

10.1.1 Microsoft Windows

1. Click here for the official Arduino IDE installation guide for Microsoft Windows.

2. Follow the instructions for installing the IDE.

3. Once the IDE is installed, return here to finish installation of the Alorium Technology board
specific packages and libraries.

10.1.2 Mac OS X

1. Click here for the official Arduino IDE installation guide for Mac OS X.

2. Follow the instructions for installing the IDE.

3. Once the IDE is installed, return here to finish installation of the Alorium Technology board
specific packages and libraries.

10.1.3 Linux
If you are running Linux, the setup steps are a bit different. Therefore, we have created one
tutorial that incorporates all of the steps Linux requires to setup Arduino IDE.

This document was originally created when we released our XLR8 board, and it still carries the
XLR8 name in the title. However, the steps remain the same for using Arduino with Sno Edge, as
well.

Click the link below to see our Linux Setup Tutorial:

e Linux Setup Tutorial

10.2 FTDI Driver Installation

Sno Edge can be programmed with the Arduino IDE across an FTDI interface located at the top
edge of the board.

Copyright 2022 Alorium Technology, LLC
43

A USB-to-FTDI adapter of some kind will be required to connect your computer to Sno for
programming with Arduino. There are a variety of cables and solutions available on the
market. One of our favorites is the SparkFun Beefy 3 Basic FTDI Breakout.

In order to communicate with the FTDI breakout board, drivers for the FTDI chip may need to be
installed. A great set of instructions for installing the driver can be found here:

o SparkFun FTDI Installation Guide

The SparkFun guide will tell you if you need to install the driver. You may need to reboot your
computer after installation.

A note about FTDI drivers and Mac OS:

If you are running macOS, you may run into issues with the usb serial port disappearing and not
reconnecting. There are known issues between the factory installed macOS FTDI drivers and
drivers available for installation from FTDI directly. And, unfortunately, the jury still appears to
be out on which version of macOS will work consistently without ever seeing the lost serial port
problem.

The following video on our YouTube channel provides the steps for a potential fix to this Mac
related issue that has worked for several of us at Alorium Technology since the summer of 2017.

It's no iron-clad guarantee, but it seems to have solved the problem so far.

How to Fix FTDI Driver Issue on Mac and macOS

10.3 Installing Sno Edge Board Package and Libraries

To take advantage of the XBs that come with Sno Edge, you'll need to take the following additional
steps.

Note: Sno Edge is part of our XLR8 family of boards, and they are all supported with the
top-level XLR8 boards package and XLR8 Arduino libraries. So, you will be downloading
and installing files that have the XLR8 name.

10.3.1 Add Sno Edge Board Support
Open the Arduino IDE and follow these steps to add board support in the Arduino IDE.

For Windows and Linux: Go to File > Preferences, in your Arduino IDE menu bar.
For Mac: Go to Arduino > Preferences, in your Arduino IDE menu bar.

Locate the ‘Additional Boards Manager URLs’ input field.

Copy and paste this URL into the “Additional Boards Manager URLs” input field

B e

Copyright 2022 Alorium Technology, LLC
44

https://raw.githubusercontent.com/AloriumTechnology/Arduino Boards/master/packag

e aloriumtech index.json

Sketchbook location:

/Users/jason/Documents /Arduino

Editor language: System Default

Editor font size: 12

Interface scale: Automatic 100

Theme: Default theme

compilation

Show verbose output during:

Compiler warnings: None

Display line numbers
Verify code after upload
Check for updates on startup
Use accessibility features
Additional Boards Manager URLs:
More preferences can be edited directly in the file
/Users/jason/Library/Arduinol5/preferences.txt

(edit only when Arduino is not running)

\loriumTechnology/Arduino_Boards /master/package_aloriumtech_index.json,

Preferences

Network

Browse

(requires restart of Arduino)

% (requires restart of Arduino)

(requires restart of Arduino)

upload

Enable Code Folding
Use external editor
Save when verifying or uploading

(=

oK Cancel

Note: Multiple URLs can be added to this field by separating each URL with a comma.

Copyright 2022 Alorium Technology, LLC

45

Install Alorium’s XL.R8 board package

—

Go to Tools > Board > Boards Manager.

2. Type “alorium,” in the search field and you will see an option to install board files for Alorium
XLR8 AVR compatible boards.

3. Select the “Alorium XLR8 Family (8-bit AVR Compat.) Boards” package and then click

“Install.”

Boards Manager

Type All C alorium

Alorium Technology SAMD (32-bits Cortex-M4) Boards

by Alorium Technology version 1.5.2 INSTALLED
Boards Included In this package:
Evo M51 Plus.

Online Help
More Info

Alorium XLR8 Family (8-bit AVR Compat.) Boards

by Alorium Technology
Boards Included In this package:
Alorium XLR8, Alorium Sno, Alorium Hinj, Alorlum Sno M2, Alorium Sno Edge, Alorium Sno Edge S0.

Online Help
More Info

2.3.0 c Install

Close

Select the Sno Edge Board
1. Go to Tools > Board. You should see a new section titled “Alorium XLR8 Family (8-bit AVR
Compat.) Boards” now exists.
2. Select “Sno Edge 50” board.

Arduino File Edit Sketch Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WiFi101 / WIFININA Firmware Updater

Evo Flashload
Board: "Sno Edge 50" > | Boards Manager.
FPGA Image: "32MHz Standard (Float, Servo, Quad) r3269" >
Adafruit Boards >
Port: "/dev/cu.usbserial-DBO110EL" >
Adafruit SAMD (32-bits ARM Cortex-MO+ and Cortex-M4) Boards >
Get Board Info
Alorium Technology SAMD (32-bits Cortex-Ma4) Boards >
Programmer: "AVRISP mkiI" > Alorium XLR8 Family (8-bit AVR Compat.) Boards > XLR8
Burn Bootloader Arduino ARM (32-bits) Boards > Snd
Arduino AVR Boards > _Snofdaa
Arduino SAMD (32-bits ARM Cortex-M0+) Boards k3| v Sno Edge 50
ESP32 Arduino > SO mZ
SparkFun ESP32 Arduino > Hinj [Standard)
SparkFun SAMD (32-bits ARM Cortex-M0+) Boards > Hinj [Enhanced)
STM32 boards groups (Board to be selected from Tools submenu 'Board part number') > OpenXLR8 - XLR8
OpenXLR8 - Snd
OpenXLR8 - Sno Edge
OpenXLR8 - Sno M2
OpenXLR8 - Hinj

Copyright 2022 Alorium Technology, LLC
46

After selecting Sno Edge 50, you will find a new menu item at Tools > FPGA Image, where you will see
the list of released Sno Edge images that are packaged with the Arduino IDE.

Arduino File Edit

Sketch Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter
WIiFi101 / WIFININA Firmware Updater
Evo Flashload

Board: "Sno Edge 50"

FPGA Image: "16MHz Standard (Float, Servo, Quad) r3269"
Port: "/dev/cu.usbserial-DB01 10EL"

Get Board Info

Programmer: "AVRISP mkil"

Burn Bootloader

33 [/ 16MHz Standard (Float, Servo, Quad) r3269

SZMIAZ Staliudiu (riodt, el V0, WUdU) 15209

v

10.3.2 Sno Edge Libraries

All libraries required to use Sno Edge are packaged with the Alorium Technology XLR8 Arduino

board package.

As new functionality or Xcelerator Blocks (XBs) are added for the FPGA, new libraries may be
released. Detailed instructions for installing required libraries will be added at that time.

10.4 Running an Example Sketch/Program

To be sure that everything is installed and working correctly, we have provided an example
Arduino sketch called “GetXLR8Version” that you can load from the Arduino IDE Examples menu.

1. Be sure that your Sno Edge board is connected to your computer either with the FTDI
interface or to a USB cable on your Sno Edge carrier board.

2. Go to Tools > Port and verify that Arduino IDE is connected to the Sno Edge serial port.
Note that your will likely have a different identifier than what’s shown below.

Arduino File Edit Sketch Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

WiFi101 / WiFiNINA Firmware Updater
Evo Flashload

Board: "Sno Edge 50"

Port: "/dev/cu.usbserial-DB0110EL"
Get Board Info

Programmer: "AVRISP mkil"
Burn Bootloader

FPGA Image: "16MHz Standard (Float, Servo, Quad) r3269"

/dev/cu.BLTH

/devicu.Bluetooth-Incomina-Port

>
v [dev/cu.usbserial-DB0110EL

Copyright 2022 Alorium Technology, LLC

47

3. Go to File > Examples > XLR8Info and select GetXLR8Version

Arduino File Edit Sketch Tools Help

New

Opent WiFi101
Open Recent > WIFININA
Sketchbook e
Examples b
Close XLR8GPIO
Save XLR8HardwareSerial
Save As... XLR8HinjEtherCard
Page Setup XLR8HinjGPIO
Print XLR8HinjSD
XLR8HinjWiFi101
XLR8HinjXBee
XLR8Info
XLR8SPI XLR8SelfTest

4. In the GetXLR8Version sketch window, click on the Upload button

‘000
o° D g g Upload Using Programmer

LR8Version

te <XLRSInfo.h>

5. Check the Serial Monitor window for the output, which should look like the output
below. Note that you will need to set the baud rate for the Serial Monitor to 115200
for this sketch to display output correctly.

Board Type: Sno Edge 50
FPGA Image: 16 MHz r3253

XLR8 Hardware Version = 3253
Modified working copy

XLR8 CID = 0xC020960C
Design Configuration = 0x8000C8A
Image =1
Clock = 32MHz
PLL Speed = 16MHz
FPGA Size = M50

OpenXLR8 Info Regs =3
Info Reg 1 = 0x11
Info Reg 2 = 0xl2
Info Reg 3 = 0x13

If you get this output from GetXLR8Version, that means everything is installed correctly.
Congratulations!

Copyright 2022 Alorium Technology, LLC
48

