arm

Arm® Development Studio

Version 2022.2

Getting Started Guide

Non-Confidential Issue 00
Copyright © 2018-2022 Arm Limited (or its affiliates). 101469_2022.2_00_en
All rights reserved.

Arm” Development Studio Getting Started Guide

Arm® Development Studio
Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

| Confidentiality | Change

1800-00 | 27 November Non- First release for Arm Development Studio
2018 Confidential
1800-01 | 18 December Non- Documentation update 1 for Arm Development Studio
2018 Confidential 2018.0
1800-02 | 31 January 2019 | Non- Documentation update 2 for Arm Development Studio
Confidential 2018.0
1900-00 | 11 April 2019 Non- Updated document for Arm Development Studio
Confidential 2019.0
1901-00 | 15 July 2019 Non- Updated document for Arm Development Studio
Confidential 2019.0-1
1910-00 [1 November Non- Updated document for Arm Development Studio
2019 Confidential 2019.1
2000-00 | 20 March 2020 Non- Updated document for Arm Development Studio
Confidential 2020.0
2000-01 | 3 July 2020 Non- Documentation update 1 for Arm Development Studio
Confidential 2020.0
2010-00 | 28 October Non- Updated document for Arm Development Studio
2020 Confidential 2020.1
2021.0- 19 March 2021 Non- Updated document for Arm Development Studio
00 Confidential 2021.0
2021.1- 9 June 2021 Non- Updated document for Arm Development Studio
00 Confidential 2021.1
2021.1- 26 August 2021 Non- Documentation update 1 for Arm Development Studio
01 Confidential 2021.1
2021.2- 10 November Non- Updated document for Arm Development Studio
00 2021 Confidential 2021.2

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Issue Confidentiality Change
| |

2022.0- 29 March 2022 Non- Updated document for Arm Development Studio
00 Confidential 2022.0 Beta

2022.0- 27 April 2022 Non- Updated document for Arm Development Studio
01 Confidential 2022.0

2022.1- 271 July 2022 Non- Updated document for Arm Development Studio
00 Confidential 20221

2022.2- 17 November Non- Updated document for Arm Development Studio
00 2022 Confidential 2022.2

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm'’s

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this
language.

To report offensive language in this document, email terms@arm.com.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Contents

Contents

LIST Of TADI@S.cceeeeeeeeeeeeeeeeeeeeceeeteeeeesesesesessessesssesssesssssssssssessesssessesssssssssssssssesssesssessesssssssssssasssens 11

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Contents
L INEFOAUCEION. .. ss s s as s s s s ss s ssssssssssasssssasssssassnes 12
LT COMVENEIONS ettt 12
1.2 USETUI TESOUITES. ...ttt 13
1.3 Other INfOrMATION. ..ot 14
2. Introduction to Arm Development STUIO.........cvvireereneerieieereeereseseessesesesessssesessesssssesessessseseses 15
2.1 Armn Compiler for EMBeAAEa.......o.oe e, 15
2.2 AT DEDUSEET ..ot 16
2.3 DEDUE PrODES .ottt 17
24 FVP MNOAEIS. ..ttt 19
2.5 AN SEEEAMIINE ..ottt 19
2.6 GraphiCS ANGIYZEI ..ottt 20
3. Installing and configuring Arm Development StUAIO.........ocveeeeeeeeeereeeeeeeeeeereeseesereeenesesesens 21
3.1 Hardware and host platform requUIr€mMents..........ooi oo 21
3.2 DebUg SYSTEM rEGUITEMENTS....ovoeiee ettt 22
3.3 INSTAIlING ON WWINAOWS ... e 23
3.3.1 Using the INStallation WIZArd.........oceveiiiieeeeeee e 23
3.3.2 UsiNg the COMMANG TIN@...iiiieeeoeee e e 23
B4 INSTAITING 0N LINUX ettt 24
3.5 AdAItioNal LINUX TDIaIIES. ..cuieiiieiiicee et 25
3.6 Uninstalling Arm Development SEUdIo 0N LINUX...oiiviii e 27
3.7 Licensing Arm Development STUAIO. 27
3.7.1 Add a license Using ProdUct SELUD ..o 28
3.7.2 Viewing and Managing [ICENSES.ot 30
3.8 LaNGUAEE SEEEINES. oot 32
3.9 Configuring an RSE connection to work with an Arm Linux target........cccoeveveveeveecceeceeeee 32
3.10 Launching gdbserver with an appliCation..........cocoovivo oo 38
3.11 Register a compiler t00ICNAIN. ... 38
3.11.1 Registering a compiler toolchain using the Arm Development Studio IDE..........ccooeie. 39
3.11.2 Register a compiler toolchain using the Arm DS command prompt.....c.cccooveeeoeeeececeeeeen 42
3.11.3 Reconfigure existing projects to use a newly registered compiler toolchain..........c.ccccoevevenne.n. 43
3.11.4 Configure a compiler toolchain for the Arm DS command prompt.......c.ccoooeveeeeveeceeeeee 43
3.12 Specify plug-in iNStall [0CAtION......coiiiiee e 45
3.13 Development Studio perspective keyboard shortCULS........ooovoeio e, 46
4, INtroduction tO A DEDUGEEN ...ttt stese s ssesessesessesessessssessssesessesersesersesessesenne 48

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Contents
4.1 Overview: Arm Debugger and important CONCEPES ..o 48
A DO UG E T CONMCEPES oottt ettt 49
4.3 Overview: Arm CoreSight debug and trace components........cooooioeiececeeeeeeeeeeeeeeeee 53
4.4 QOverview: Debugging multi-core (SMP and AMP), big.LITTLE, and multi-cluster targets............ 54
4471 DEbUEZING SMP SYSEEIMS ... e, 54
A4.4.2 DEDUZZING AMP SYSEEMIS. .. oottt 57
4.4.3 Debugging Dig. LIT TLE SyStemMIS. ..o 58
4.5 Overview: Debugging Arm-based LinuX appliCationS......covvoveicoeeeeeeeeeeeeeeeeeeeeeeeeeeee 58
5. INtroduction tO the IDE....... ettt st s e e st s saes s s s s sese e e ssesesessrsesesenansans 60
5.0 IDE OVEIVIEW ... ettt 60
5.2 USING TNE D E ..ottt 62
5.2.1 Changing the default WOrKSDACEo 62
5.2.2 SWITCHING PEISPECTIVES ... et 63
5.2.8 AQAING VIBWS. ... ettt 64
5.3 Personalize your development enVIrONMENT.. ..o 65
5.4 Launch the Arm Development Studio command prompt. ... 66
5.5 Headless tools in the Arm Development Studio command prompt........cocooeveeioieeceeeeeeeen, 69
6. Projects and examples in Arm Development StUdiO..........ceceeeeeeeceenreeeeeeeeeeneneseesesesesesesssens 71
6.1 WOTKING WItN DIOJECES ... 71
.0 L PrOJECT Y DS ettt 71
6.1.2 Create @ NeW C OF Gt PIOJECT. ..o 73
6.1.3 Creating an empty Makefile ProOJECT. ... e 74
6.1.4 Create a new Makefile project with existing COAe. ..o 75
6.1.5 Setting up the compilation tools for a specific build configuration..........cccovoveieveeecceeeee 77
6.1.6 Configuring the C/CH++ build DENAVION ..o 78
6.1.7 Run the Arm Development Studio IDE from the command-line to clean, build, and import
D OB CES eeeteeeeeteeteeeeteeeeeeas 80
6.1.8 Updating a project to a New t00ICNAIN. ... 82
6.1.9 Add a soUrce file t0 YOUT PrOJECT ... 82
6.1.10 Add a new source file £0 YOUT PIrOJECT. ..o e 83
6.1.11 Sharing Arm Development StUAIO ProJECES. ..o 86
. 112 WVOTKING SEES oottt 86
6.2 Importing and eXPorting PrOJECES. . ..o, 91
6.2.1 Importing and eXPOrting OPTIONS.o 91
6.2.2 UsINg the IMPOIt WIZAT ... 92

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Contents
6.2.3 UsINg the EXPOIt WIZArd . ..o 93
6.2.4 Import an existing ECliPSe PrOJECT ... 94
6.3 Examples provided with Arm Development StUdIO........c.coviiiiieicicce e 97
6.4 IMpPort the eXamPlE PrOJECES. ..o 98
7. WILING COUCunriritereeetetereceeteessertesestesesaesesaesessssessssessesessesesssessssessssesssessesessesesssensasensesessesesssessesessssens 101
7.1 EdIEING SOUICE COUC....ooimiiie oo 101
7.2 ADOUL the C/CHF @AIOM it 102
7.3 About the Arm assemMbDIEr EAITOTo 102
7.4 About the ELF CONtENT @AITON . o 103
7.5 ELF content editor - Header 1ab........coiieicccee e 104
7.6 ELF content editor - SECTIONS £aD... i 104
7.7 ELF content editor - SEgments tab. ... 105
7.8 ELF content editor - Symbol Table tab........ocoo e, 106
7.9 ELF content editor - DisassembBDIY tab.. ..o 107
7.10 About the scatter file @AIOr. ..o 108
711 Creating @ SCatter f11e. e 109
7.12 Importing a memory map from a BCD fIle....o.o oo, 111
8. DEDUEEING COUR.....uutreteetreteeteecteecteeete et se st e sseseesesestesesessssesassesassessssessasesensesessesersensnsessasesensenenss 114
8.1 Overview: Debug connections in Arm DebUEEET.....oov i, 114
8.2 Using FVPs with Arm Development STUAIO ..o 115
8.3 Configuring a connection from the command-line to a built-in FVP ..o 115
8.4 Configuring a connection to an external FVP for bare-metal application debug...........c............ 116
8.5 Configuring a connection to a bare-metal hardware target.........ocooooioooiceeeeeeee 119
8.6 Configuring a connection to a Linux application using gdbserver........ccoovoececcecceeceee. 122
8.7 Configuring a connection to a LINUX KEIME.... ... 125
8.8 Configuring trace for bare-metal or Linux kernel targets. ... 128
8.9 Configuring an Events view connection to a bare-metal target.........ccccoooooooeoieeceeeee 131
8.10 Exporting or importing an existing Arm Development Studio launch configuration................ 133
8.171 Disconnecting frOmM @ TarZeT. .. .o oo 138
9. TULOFIAIS .ttt as st e s s s st e s s s ssssessssassessessssasssssessssassasssssssaessssesssssons 139
9.1 TUtorial: HElO WWOTT ... 139
9.1.1 Open Arm Development Studio for the first time.......c.coooiiieeeeeeeeeeeeeeeeeee 139
9.1.2 Create a ProjeCt N C OF Gt oot 140
9.1.3 CONAIGUIE YOUI PIOJECT. ..ot 142

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Contents
D14 BUIlA YOUE PIrOJECE. ... oo 143
9.1.5 Configure YOUTr AEDUS SESSION...c.iiiiiiee et 143
9.1.6 Application debug wWith Arm DEeDUZEETooeoeeeeeeeeeeeeeeeee e 150
9.1.7 Disconnecting from @ TarZET.. ..o 155
9.2 TULOMIAL: USING FVPS .. oo 156
D20 OVEIVIEW: FVPS ..ot 157
9.2.2 Launch and connect to an FVP in Arm Development StUdio.......cooooiioi i 157
9.2.3 Configure a connection to an FVP for debug.. ... 160
2.2.4 Run applications 0N @n FVP ... e 161
9.2.5 Capture trace output from an FVP. ..o 163
9.2.6 Add an external FVP to Arm Development StUAiO......cocoovoviio oo, 166
10. Troubleshoot Arm DevelopmeENnt StUIO........c.cvciieieieeecrcecteereeeresesese s sesesesessesessenes 168
10.1 Arm Linux problems and SOIULIONS. ..o 168
10.2 Enabling internal logging from the debUZEEr. ..o, 169
10.3 FTDI probe: Incompatible driVer ©ITOr. ..., 169
10.4 Target connection problems and SOIULIONS. ..o 170
11. Migrating from DS-5 to Arm Development StUIO........o.cceeeeeeeeecneereeneeeeneseseseesesesesesesens 172
11.1 Add an EXISHING LICENSE SEIVET ...t 172
11.2 Default Workspace LOCATION . ..ot 176
11.3 Combined C/C++ and Debug PerspeCtiVES.o 176
11.4 Migrate an existing DS=5 PrOJECT.....oi i 181
L1 CMSIS PACKS ettt 185
11.6 Create a new Hardware CONNECHION. ..o 190
11.7 Connect to New Or CUSTOM NArAWATE........c.cvciiieeee e 197
11.8 Create a new Linux application CONNECHION. ..o 203
11.9 Create a new mModel CONNECTION......ccoiiiieiceeeee e 208
11.10 Connect to new or CUSTOM MOAEIS. ... 212
11.171 Imported Vision project MItationS.o, 218
11.12 Other differences between DS-5 and Arm Development Studio........ccooooiiviiiiicecce 219
A. TerminolOgY anNd SNOITCULS........coevereeeereretceeeeree et eeresese e seesesessesesesessssesesessssesesesessrsesssessrsanes 220
AL TEIMNINOIOZY ettt 220
A2 KeYD0Ard SNOMTCULS ...t 221

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

List of Tables
Table 3-1: Linux kernel version reqUIrE€MENTS. ..o 22
Table 3-2: Definitions of the commands in the msiexec example.........ccocoevvveeceeceenee. 24
Table 5-1: Arm DS IDE OPHIONS. ..o 69
Table 7-1: Arm assembler editor SNOMCULS.ov i 102

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Introduction

1. Introduction

This book describes how to get started with Arm® Development Studio. It takes you through the
processes of installing and licensing Arm Development Studio, and guides you through some of the
common tasks that you might encounter when using Arm Development Studio for the first time.

1.1 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention ‘ Use
italic Citations.
bold Interface elements, such as menu names.
Terms in descriptive lists, where appropriate.
monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline

A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Warning

Requirements for the system. Not following these requirements might result in system failure or damage.

Danger

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Introduction

Convention ‘ Use
@" An important piece of information that needs your attention.

Note

A useful tip that might make it easier, better or faster to perform a task.

% A reminder of something important that relates to the information you are reading.

Remember

1.2 Useful resources

This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

+ Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

o Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality
1WVision User's Guide 101407 Non-Confidential
Component Architecture Debug Interface 100963 Non-Confidential
User Guide

Arm Development Studio Debugger 101471 Non-Confidential
Command Reference

Arm Development Studio Heterogeneous 102021 Non-Confidential
system debug with Arm Development

Studio

Arm Development Studio User Guide 101470 Non-Confidential
Arm DSTREAM-HT Getting Started Guide |101760 Non-Confidential
Arm DSTREAM-HT System and Interface 101761 Non-Confidential
Design Reference Guide

Arm DSTREAM-PT Getting Started Guide 101713 Non-Confidential
Arm DSTREAM-PT System and Interface 101714 Non-Confidential
Design Reference Guide

Arm DSTREAM-ST Getting Started Guide 100892 Non-Confidential
Arm DSTREAM-ST System and Interface 100893 Non-Confidential
Design Reference Guide

Arm DSTREAM-XT Getting Started Guide 102443 Non-Confidential
Arm DSTREAM-XT System and Interface 102444 Non-Confidential
Design Reference Guide

CoreSight Components Technical Reference |DDIO314 Non-Confidential
Manual

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Introduction

Arm product resources Document ID Confidentiality ‘
CoreSight System Trace Macrocell Technical |DDIO444 Non-Confidential
Reference Manual

CoreSight Trace Memory Controller DDI0461 Non-Confidential
Technical Reference Manual

Fast Models Fixed Virtual Platforms 100966 Non-Confidential
Reference Guide

Iris User Guide 101196 Non-Confidential
User-based Licensing License Server 107573 Non-Confidential
Administration Guide

User-based Licensing User Guide 102516 Non-Confidential
Arm® architecture and specifications Document ID Confidentiality
ARMV7-M Architecture Reference Manual |DDI0403 Non-Confidential
CoreSight Program Flow Trace Architecture [IHIO035 Non-Confidential

Specification

Non-Arm resources Documentation Organization

Eclipse documentation https:/help.eclipse.org/ Eclipse Foundation

FTDI driver Installation Guide for Linux https:/www.ftdichip.com/ Future Technology Devices International
Support/Documents/AppNotes/ Limited (FTDI)

AN_220_FTDI_Drivers_Installation_Guide_for| Linux.pdf

1.3 Other information

See the Arm website for other relevant information.

e Arm® Developer.
e Arm® Documentation.
e Technical Support.

e Arm® Glossary.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Development Studio

2. Introduction to Arm Development Studio

Arm® Development Studio is a professional software development solution for bare-metal
embedded systems and Linux-based systems. It covers all stages in development from boot code
and kernel porting to application and bare-metal debugging, including performance analysis.

It includes:

The Arm Compiler for Embedded 6 toolchain.
Build embedded and bare-metal embedded applications.

Arm Debugger
A graphical debugger supporting software development on Arm processor-based targets and
Fixed Virtual Platform (FVP) targets.

Fixed Virtual Platform (FVP) targets
Single and multi-core simulation models for architectures Armvé-M, Armv7-A/R/M, Armv8-
A/R/M, and Armv?-A. These enable you to develop software without any hardware.

Arm Streamline
A graphical performance analysis tool that enables you to transform sampling data and
system trace into reports that present data in both visual and statistical forms.

Graphics Analyzer

Graphics Analyzer allows graphics developers to trace OpenGL ES, Vulkan and OpenCL API
calls in their applications.

Dedicated examples, applications, and supporting documentation to help you get started with using
Arm Development Studio tools.

Some third-party compilers are compatible with Arm Development Studio. For example, the GNU
Compiler tools enable you to compile bare-metal, Linux kernel, and Linux applications for Arm
targets.

2.1 Arm Compiler for Embedded

The Arm® Compiler for Embedded toolchains enable you to build applications and libraries that are
suitable for bare-metal embedded systems.

As part of the download package, Arm Development Studio includes Arm Compiler for Embedded
6 for compiling embedded and bare-metal embedded applications. It supports the Armvé-M,
Armv7, Armv8, and Armv%-A architectures.

There are two Arm Compiler toolchains that work with Arm Development Studio; the legacy Arm
Compiler 5, and the latest Arm Compiler for Embedded 6. You can run these toolchains in the Arm
Development Studio IDE, or from the command line.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Development Studio

o References to Arm Compiler for Embedded in the Arm Development Studio
documentation refer to Arm Compiler for Embedded 6, unless otherwise
specified.

o Arm Compiler 5 is not included in the Arm Development Studio download
package. However, you can download the legacy toolchain from Arm Compiler 5
Downloads. To install, see Add a compiler to Arm Development Studio.

e The features available to you in Arm Compiler for Embedded depend on your
individual license type.
For example, a license might:
o Limit the use of Arm Compiler for Embedded to specific processors.
o Place a maximum limit on the size of images that can be produced.
You can enable additional features of Arm Compiler for Embedded by

purchasing a license for the full Arm Development Studio suite. Contact your
tools supplier for details.

Related information
Register a compiler toolchain on page 38

2.2 Arm Debugger

Arm® Debugger is accessible using either the Arm Development Studio IDE or command-line, and
supports software development on Arm processor-based targets and Fixed Virtual Platform (FVP)
targets.

Using Arm Debugger through the IDE allows you to debug bare-metal and Linux applications with
comprehensive and intuitive views, including:

e Synchronized source and disassembly.

» Call stack.

e Memory.

e Registers.

o Expressions.

e Variables.

e Threads.

o Breakpoints.

« Trace.

The Debug Control view enables you to single-step through applications at source-level or

instruction-level, and see other views update when the code is executed. Setting breakpoints or
watchpoints stops the application and allows you to explore the behavior of the application. You
Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 16 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Development Studio

can also use the view to trace function executions in your application with a timeline showing the
sequence of events, if supported by the target.

You can also debug using the Arm DS Command Prompt command-line console, which allows for
automation of debug and trace activities through scripts.

Related information
Debug control view
Overview of Arm Debugger

2.3 Debug probes

Arm® Development Studio supports various debug adapters and connections.

Debug adapters

Debug adapters vary in complexity and capability. When you use them with Arm Development
Studio, they provide high-level debug functionality, for example:

e Reading/writing registers
o Setting breakpoints
e Reading from memory

e Writing to memory

Supported Arm debug adapters include:
e Arm DSTREAM

e Arm DSTREAM-ST

e Arm DSTREAM-PT

e Arm DSTREAM-HT

e Arm DSTREAM-XT

o Keil® ULINK™2

e Keil ULINKpro™

o Keil ULINKpro D

o Keil ULINK-Plus

Supported third-party debug adapters include:
e ST-Link

e Cadence virtual debug

e FTDI MPSSE JTAG

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 17 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Development Studio

If you are using the FTDI MPSSE JTAG adapter on Linux, the OS automatically
installs an incorrect driver when you connect this adapter. For details on how to
fix this issue, see Troubleshooting: FTDI probe incompatible driver error in the
Arm Development Studio User Guide.

o USB-Blaster Il

If you are using the USB-Blaster debug units, Arm Debugger can connect to
Arria V SoC, Arria 10 SoC, Cyclone V SoC and Stratix 10 boards. To enable the
connections, ensure that the environment variable guarTus rooTDIR is set and
contains the path to the Quartus tools installation directory:

o On Windows, this environment variable is usually set by the Quartus tools
installer.

o On Linux, you might have to manually set the environment
variable to the Quartus tools installation path. For example, ~/
<quartus_tools installation directory>/gprogrammer.

For information on installing device drivers for USB-Blaster and USB-Blaster Il
consult your Quartus tools documentation.

Debug connections
Debug connections allow the debugger to debug a variety of targets.

Supported debug connections include:
« CADI (debug interface for models)
e lris interface for models

e Ethernet to gdbserver

o CMSIS-DAP

Debug hardware configuration

Use the debug hardware configuration views in Arm Development Studio to update and configure
the debug hardware adapter that provides the interface between your development target and
your workstation.

Arm Development Studio provides the following views:
o Debug Hardware Config IP view
Use this view to configure the IP address on a debug hardware adapter.

o Debug Hardware Firmware Installer view
Use this view to update the firmware on a debug hardware adapter.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Introduction to Arm Development Studio

These views only support the DSTREAM family of devices.

2.4 FVP models

Fixed Virtual Platforms (FVPs) are complete simulations of an Arm system, including processor,
memory and peripherals. FVP targets give you a comprehensive model on which to build and test
your software, from the view of a programmer.

When using an FVP, absolute timing accuracy is sacrificed to achieve fast simulated execution
speed. This means that you can use a model for confirming software functionality, but you must
not rely on the accuracy of cycle counts, low-level component interactions, or other hardware-
specific behavior.

Arm® Development Studio provides several FVPs, covering a range of processors in the Cortex®
family. You can also connect to a variety of other Arm and third-party simulation models that
implement the Iris interface for debug and trace, or the deprecated Component Architecture
Debug Interface (CADI).

Related information
The Iris User Guide
Introduction to the Component Architecture Debug Interface (CADI)

2.5 Arm Streamline

Arm® Streamline is a graphical performance analysis tool. It enables you to transform sampling
data, instruction trace, and system trace into reports that present the data in both visual and
statistical forms.

Arm Streamline uses hardware performance counters with kernel metrics to provide an accurate
representation of system resources.

Related information
Streamline documentation

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 19 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Introduction to Arm Development Studio

2.6 Graphics Analyzer

Graphics Analyzer is a tool to help OpenGL ES, EGL, OpenCL, and Vulkan developers get the best
out of their applications through analysis at the API level.

Graphics Analyzer allows developers to trace OpenGL ES, Vulkan and OpenCL API calls in their
application and understand frame-by-frame the effect on the application to help identify possible
issues. Attempted misuse of the API is highlighted, as are recommendations for improvement on
a Mali™-based system. Trace information may also be captured to a file on one system and be
analyzed later. The state of the underlying GPU subsystem is observable at any point.

Related information
Graphics Analyzer

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 20 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

3. Installing and configuring Arm
Development Studio

Arm® Development Studio is available for Windows and Linux operating systems. This
chapter describes installation requirements, the installation process, and how to configure Arm
Development Studio.

3.1 Hardware and host platform requirements

For the best experience with Arm® Development Studio, your hardware and host platform should
meet the minimum requirements.

Hardware requirements
To install and use Arm Development Studio, your workstation must have at least:

e Adual core x86 2GHz processor (or equivalent).
e 2GB of RAM.
o Approximately 3GB of hard disk space.

To improve performance, Arm recommends a minimum of 4GB of RAM when you:
e Debug large images.
e Use models with large simulated memory maps.

e Use Arm Streamline.

Host platform requirements
Arm Development Studio supports the following host platforms:

e Windows 10

e Red Hat Enterprise Linux 7 Workstation
e Ubuntu Desktop Edition 18.04 LTS

o Ubuntu Desktop Edition 20.04 LTS

Arm Development Studio only supports 64-bit host platforms.

Arm Compiler for Embedded host platform requirements

Arm Development Studio contains the latest version of Arm Compiler for Embedded 6 that was
available at the time your version of Arm Development Studio was released. The release note
provides information on host platform compatibility:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 21 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

o Arm Compiler for Embedded 6

For information on adding other versions of Arm Compiler to Arm Development Studio, including
Arm Compiler 5, see register a compiler toolchain.

3.2 Debug system requirements
When debugging bare-metal and Linux targets, you need additional software and hardware.

Bare-metal requirements

You require a debug unit to connect bare-metal targets to Arm® Development Studio. For a list of
supported debug units, see Debug Probes.

Linux application and Linux kernel requirements
Linux application debug requires gdbserver version 7.0 or later on your target.

In addition to gdbserver, certain architecture and debug features have minimum Linux kernel
version requirements. This is shown in the following table:

Table 3-1: Linux kernel version requirements

Architecture or debug feature ! Minimum Arm Linux kernel version

Debug with Arm Debugger 2.6.28
Application debug on Symmetric MultiProcessing (SMP) systems 2.6.36
Access VFP and Arm® Neon® registers 2.6.30
Arm Streamline 34

Managing firmware updates

o For DSTREAM, use the debug hardware firmware installer view to check the firmware and
update it if necessary. Updated firmware is available in <install directory>/sw/debughw/
firmware.

e To use ULINK™2 debug probe with Arm Debugger, you must upgrade with CMSIS-DAP
compatible firmware. On Windows, the uL2_upgrade.exe program can upgrade your ULINK2
unit. The program and instructions are available in <install directory>/sw/debughw/ULINK2.

e For ULINKpro™ and ULINKpro D, Arm Development Studio manages the firmware installation.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 22 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

3.3 Installing on Windows

There are two ways to install Arm® Development Studio, you can use either the installation wizard,
or the command line.

You can install multiple versions of Arm Development Studio on Windows
platforms. To do this, you must use different root installation directories.

3.3.1 Using the installation wizard

To install Arm® Development Studio on Windows using the installation wizard, use the following
procedure.

Before you begin

e Download the Arm Development Studio installation package.

Procedure
1. Unzip the downloaded .zip file.

2. Run armds-<version>.exe from this location. This opens the Arm Development Studio setup
wizard.

3. Follow the on-screen instructions.

e During installation, you might be prompted to install device drivers. Arm
recommends that you install these drivers. They allow USB connections to
DSTREAM and Energy Probe hardware units. They also support networking
for the simulation models. These drivers are required to use these features.

e When the drivers are installed, you might see some warnings about driver
software. You can safely ignore these warnings.

3.3.2 Using the command line

To install Arm® Development Studio on Windows using the command line, use the following
procedure.

Before you begin

e Download the Arm Development Studio installation package.

e You must have admin privileges on your machine to install from the command line.

Procedure
1. Open the command prompt, with administrative privileges.
Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 23 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

2. Run the Microsoft installer, msiexec.exe.

e You must provide the location of the .msi file as an argument to msiexec.

e Todisplay a full list of msiexec options, run msiexec /? from the command
line.

Example 3-1: Example using msiexec
An example of how to install Arm Development Studio using msiexec is:
msiexec.exe /i <installer locationdatainstall.msi> EULA=1 /gn /1*v install.log

Table 3-2: Definitions of the commands in the msiexec example

Command ! Definition

/i Performs the installation.
<installer locationdatainstall.msi> Specifies the full path name of the .msi file to install.
/EULA=1 This is an Arm-specific option. Set EULA to 1 to accept the End

User License Agreement (EULA). You must read the EULA before
accepting it on the command line. This can be found in the GUI
installer, the installation files, or on the Arm Development Studio
downloads page.

/an Specifies quiet mode; installation does not require user interaction.

Note:

Device driver installation requires user interaction. If you do not
require USB drivers, or if you want the installation to avoid user
interaction for USB drivers, use the SKIP_ DRIVERS=1 option on
the command line.

/1*v<install.log> Specifies the log file to display all outputs from the installation.

3.4 Installing on Linux

Install Arm® Development Studio on Linux using the installation package provided on the Arm
developer website.

Before you begin
Download the Linux installation package from the Arm Developer website.

About this task

You can install multiple versions of Arm Development Studio on Linux platforms. To
do this, you must use different root installation directories.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 24 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Installing and configuring Arm Development Studio

Procedure
Run armds-<version>.sh and follow the on-screen instructions.

During the installation, Arm Development Studio automatically runs a
dependency check and produces a list of missing libraries. You can safely
continue with the installation. Arm recommends that you install these libraries
before using Arm Development Studio.

You can find more details and a full list of required libraries in Additional Linux
libraries.

Arm recommends that you run the post install setup scripts during the
installation process.

Next steps
To use the post install setup scripts after installation, with root privileges, run:

run_post install for Arm DS IDE <version>.sh
This script is in the install directory.

Device drivers and desktop shortcuts are optional features that are installed by this script. The
device drivers allow USB connections to debug hardware units, for example, the DSTREAM family.
The desktop menu is created using the http:/www.freedesktop.org/ menu system on supported
Linux platforms.

Use suite exec to configure the environment variables correctly for Arm
Development Studio. For example, run <install directory>/bin/suite exec
<shell> to open a shell with the PATH and other environment variables correctly
configured. Run suite exec with no arguments for more help.

3.5 Additional Linux libraries

To install Arm® Development Studio on Linux, you need to install some additional libraries, which
might not be installed on your system.

The specific libraries that require installation depend on the distribution of Linux that you are
running. The dependency check linux-x86_ 64.sh script identifies libraries you must install. This
scriptis in <install location>/sw/dependency check.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 25 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Installing and configuring Arm Development Studio

If the required libraries are not installed, some of the Arm Development Studio tools
might fail to run. You might encounter error messages, such as:

e armcc: No such file or directory

e arm-linux-gnueabihf-gcc: error while loading shared libraries: libstdc++.50.6:
cannot open shared object file: No such file or directory

Required libraries
Arm Development Studio depends on the following libraries:

libasound.so.2
libatk-1.0.s0.0
libc.so.6
libcairo.so.2
libfontconfig.so.1l
libfreetype.so.6
libgcc_s.so.l*
1ibGL.so.1
1ibGLU.so.1
libgthread-2.0.s0.0
libgtk-x11-2.0.s0.0
libncurses.so.5
libnsl.so.1l
libstdc++.s0.6
libusb-0.1.s0.4
1ibX11l.s0.6
libXext.so0.6
libXi.so0.6
libXrender.so.1l
libXt.so.6
libXtst.so0.6

libz.so.1 ™"

On a 64-bit installation, libraries marked with an asterisk require an additional 32-bit
compatibility library. Tools installed by the 64-bit installer have dependencies on 32-
bit system libraries. Arm Development Studio tools might fail to run, or might report
errors about missing libraries if 32-bit compatibility libraries are not installed.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 26 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Some components also render using a browser library. Arm recommends that you install one of
these libraries to ensure all components render correctly:

® libwebkit-1.0.s0.2
® libwebkitgtk-1.0.s0.0

® libxpcom.so

3.6 Uninstalling Arm Development Studio on Linux

Arm® Development Studio is not installed with a package manager. To uninstall Arm Development
Studio on Linux, you must delete the installation directory. You might also need to delete additional
configuration files manually.

Procedure
1. Locate your Arm Development Studio installation directory.

2. If you ran the optional post-install step during or after installation, up to three additional
configuration files are created outside of the install directory. Delete the following files if they
are present:

® /etc/udev/rules.d/ARM debug tools.rules
e /etc/hotplug/usb/armdebugtools

e /etc/hotplug/usb/armdebugtools.usermap

3. If you installed the optional desktop shortcuts during or after installation, you can also remove
them:
a) Locate the Arm Development Studio installation directory.
b) Run the follovving SCI’iptZ remove menus_ for Arm DevelopmentStudio <version>.sh.

4. Delete the Arm Development Studio installation directory.

Related information
Installing on Linux on page 24

3.7 Licensing Arm Development Studio

Arm® Development Studio uses Arm user-based licensing or FlexNet license management software
to enable features that correspond to specific editions.

To compare Arm Development Studio editions, see Compare editions

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 27 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Installing and configuring Arm Development Studio

3.7.1 Add a license using Product Setup

When you first open Arm® Development Studio, the Product Setup dialog box opens and prompts
you to add a license.
Before you begin

e If you or your company has purchased Arm Development Studio, you need one of the
following:

o Arm user-based licensing:

The license server address or an activation code.

o FlexNet license management:

The license file or the license server address and port number.

e To obtain an evaluation license, you need an Arm account.

Procedure
1. Add your license:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-1: Product Setup dialog box shown when you first open Arm Development Studio.

n Product Setup

Add License

Select the type of license that you would like to use

(®) Manage Arm User-Based Licenses

Select this option to launch the Arm User-Based License manager.
If a User-Based License iz activated, the Arm DS IDE will need to be restarted for the license to take effect

() Add product license

Select this option to use an existing license file or license server

() Obtain evaluation license

Select this option to obtain a 30-day Gold Edition evaluation license

Please visit Arm's web licensing portal to obtain the license for an already purchased product.

If you cannot access Arm's web licensing portal then please contact "license.support@arm.com” providing
your MAC address and product serial number (if known].

< Back Mext = Cancel

e For Arm user-based licensing, select Manage Arm User-Based Licenses, and then click
Finish to open the Arm License Management Utility dialog box.

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https:/Im.arm.com. For assistance with user-based licensing issues, visit
https:/developer.arm.com/support and open a support case.

e For a FlexNet license server, select Add product license, and click Next. Enter the license
server address and port number, in the form <port number> @ <server address>. Click
Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Installing and configuring Arm Development Studio

e For a FlexNet license file, select Add product license, and click Next. Click Browse... and
select the license file. Click Next.

¢ [or an evaluation license:
a. Select Obtain evaluation license and click Next.
b. Log into your Arm account and click Next.

c. Choose a network interface and click Finish. An evaluation license is generated.
2. Select a product to activate, and click Finish.

3.7.2 Viewing and managing licenses

To view license information in Arm® Development Studio, select Help > Arm License Manager.

3.7.2.1 Add a license using the Arm License Manager

Use the Arm License Manager to add a license to Arm® Development Studio.

Before you begin

e |f you are using Arm user-based licensing, you require the license server address or an
activation code.

e |f you are using FlexNet license management, you require the license file or the license server
address and port number.

Procedure
1. Click Help > Arm License Manager... to view your license information.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 30 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2

Installing and configuring Arm Development Studio

Figure 3-2: Adding a license in preferences dialog box.

“* Preferences (Filtered) O hd
‘ type filter text X | - - 8
w Arm D5
Product Licenses Active Product
Arm User-Based License Active Change
Licenses
License Origin Add
Remove
Manage Arm User-Based Licenses
Restore Defaults Apply
Y]
'i?) rdts| [é, Apply and Close Cancel

2. Use one of the following methods to add your license:

¢ Click Add to open the Product Setup wizard, and follow the steps in Using Product Setup

to add a license to add your license.

¢ Click Manage Arm User-Based Licenses, to open the Arm License Management Utility

dialog box.

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https:/Im.arm.com. For assistance with user-based licensing issues, visit
https:/developer.arm.com/support and open a support case.

3. Click Apply and Close to save.

Related information
Add a license using Product Setup on page 27

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

3.7.2.2 Delete a FlexNet license

You can use the Arm license manager to delete unwanted FlexNet licenses from Arm®
Development Studio.

About this task

If you are using user-based licensing, there is generally no requirement to delete a license, as a user
can use the license for multiple products on multiple devices. To delete a license, for example, if the
local license cache is corrupt, follow the instructions in the User-based Licensing User Guide.

Procedure
1. Click Help > Arm License Manager to view your license information.
2. Select the license you want to delete, and click Remove.

3.8 Language settings

Only Japanese language packs are currently supported by Arm® Development Studio. These
language packs are installed with Arm Development Studio.

Procedure
Launch the IDE in Japanese using one of the following methods:

o If your operating system locale is set as Japanese, the IDE automatically displays the
translated features.

o If your operating system locale is not set as Japanese, you must specify the -n1 command-
line argument when launching the IDE:

armds_ide -nl ja

Arm Compiler for Embedded 6 does not support Japanese characters in
source files.

3.9 Configuring an RSE connection to work with an Arm
Linux target

On some targets, you can use a SecureSHell (SSH) connection with the Remote System Explorer
(RSE) provided with Arm® Development Studio.

Procedure
1. In the Remote Systems view, click the Define a connection to remote system option on the
toolbar.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 32 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Installing and configuring Arm Development Studio

2. In the Select Remote System Type dialog box, expand the General group and select SSH Only.

Figure 3-3: Selecting a connection type

B New Connection O X

Select Remote System Type H

Connection for SSH access to remote systems

System type:
| type filter text |

v = General
% FTP Only
5% SSH Only

@ < Back | Mext = Finish Cancel

3. Click Next.
4. In Remote SSH Only System Connection, enter the remote target |P address or name in the

Host name field.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 33 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Installing and configuring Arm Development Studio

Figure 3-4: Enter connection information

n New Connection

Remote SSH Only System Connection

Define connection information

Parent profile: E119614 vl
Host name: | 10.2.195.169 v|
Connection name: | 10.2.195.169 |
Description: | |
[] Verify host name

Configure proxy settings

® | < Back ” MNext = ‘ | Finish | ‘ Cancel

5. Click Next.
6. Verify if the Sftp Files, Configuration, and Available Services are what you require.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 34 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-5: Sftp Files options

n New Connection

Sftp Files

Define subsystem information

Configuration Properties

ssh.files Property Value

Available Services
22 Ssh / Sftp File Service
~ B4 SSH Connector Service
=l 55H Settings

Description

Access a remote file system via Ssh / Sftp protocol

® | < Back ” Next = | ‘ Finish ‘ ’ Cancel

7. Click Next.
8. Verify if the Ssh Shells, Configuration, and Available Services are what you require.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 35 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-6: Defining the shell services

n New Connection

Ssh Shells

Define subsystem information

Configuration Properties

ssh.shells Property Value

Available Services

22 Generic shell service
~ 4 SSH Connector Service
] SSH Settings

Description

Generic shell service

@ | < Back || Next > | ‘ Finish ’ ‘ Cancel

9. Click Next.
10. Verify if the Ssh Terminals, Configuration, and Available Services are what you require.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 36 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-7: Defining the terminal services

B New Connection O X

Ssh Terminals

Define subsystem information

Configuration Properties

ssh.terminals Property Value

Available Services
22 SSH Terminal Service

~ B4 SSH Connector Service
£l SSH Settings

Description

SSH Terminal Service Description

® ‘ < Back Next = Finish | ‘ Cancel

11. Click Finish.

12. In the Remote Systems view:
a) Right-click on the target and select Connect from the context menu.
b) In the Enter Password dialog box, enter a UserlD and Password if required.
c) Click OK to close the dialog box.

Results
Your SSH connection is now set up. You can copy any required files from the local file system on to

the target file system. You can do this by dragging and dropping the relevant files into the Remote
Systems view.

Related information

Import the example projects on page 98
Debug Configurations - Connection tab
Debug Configurations - Files tab

Debug Configurations - Debugger tab
Debug Configurations - Environment tab

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 37 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Target management terminal for serial and SSH connections
Remote Systems view

3.10 Launching gdbserver with an application

Describes how to launch gdbserver with an application.

Procedure

1. Open a terminal shell that is connected to the target.

2. In the Remote Systems view, right-click on Ssh Terminals.
3. Select Launch Terminal to open a terminal shell.
4

In the terminal shell, navigate to the directory where you copied the application, then execute
the required commands.

Example 3-2: Example: Launch Gnometris

The following example shows the commands used to launch the Gnometris application.

export DISPLAY=ip:0.0
gdbserver :port gnometris

Where:
ip
is the IP address of the host to display the Gnometris application.

port
is the connection port between gdbserver and the application, for example so00.

If the target has a display connected to it, you do not need to use the export
DISPLAY command.

3.11 Register a compiler toolchain

You can use a different compiler toolchain other than the one installed with Arm® Development
Studio.

If you want to build projects using a toolchain that is not installed with Arm Development Studio,
you must first register the toolchain you want to use. You can register toolchains:
e Using the Preferences dialog box in Arm Development Studio.

e Using the add_toolchain utility from the Arm Development Studio Command Prompt.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 38 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

You might want to register a compiler toolchain if:

e You want to use a GCC toolchain, or another Arm compiler such as Arm Compiler 5, that is not
included in the Arm Development Studio installation.

e You upgrade your version of Arm Development Studio but you want to use an earlier version of
the toolchain that was previously installed.

» You install a newer version or older version of the toolchain without re-installing Arm
Development Studio.
A variety of other compiler toolchains are available. To find other compiler toolchains, you can do

the following:

e Navigate to Arm Compiler for Embedded downloads for the latest Arm Compiler for Embedded
toolchain.

e Download a GCC toolchain from Linaro.
¢ Download the GNU Arm Embedded toolchain for Arm processors.

e If you are using Arm Development Studio 2021.1 or later, and want to use Arm Compiler 5, you
can download it from https:/developer.arm.com/tools-and-software/embedded/arm-compiler/
arm-compiler-5/downloads.

When you register a toolchain, the toolchain is available for new and existing projects in Arm
Development Studio.

You can only register Arm or GCC toolchains.

3.11.1 Registering a compiler toolchain using the Arm Development Studio
IDE

You can register compiler toolchains using the Preferences dialog box in Arm® Development
Studio.

Before you begin

e Download an Arm Compiler for Embedded or GCC toolchain.

Procedure

1. Open the Toolchains tab in the Preferences dialog box; Windows > Preferences > Arm DS >
Toolchains. Here, you can see the compiler toolchains that Arm DS currently recognizes,

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 39 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-8: Toolchains Preferences dialog box

B Preferences] X

type filter text Toolchains

> General A
v Arm DS
Arm Account

Add/Remove toolchains

Name Add...
Arm Compiler 6

Arm Assembler Remove
Configuration Database
> Debugger
General
Product Licenses
Scatter File Editor
Target Configuration Editor
Toolchains
Tutorials and Videos
Updates
> C/C++
> CMSIS-Packs Name: No Toolchain Selected
> Help Path:
-iJI:\sl';aII/Update 9 Apply

@ e Apply and Close Cancel

2. Click Add and enter the filepath to the toolchain binaries that you want to use. Then click Next
to autodetect the toolchain properties.

3. After the toolchain properties are autodetected, click Finish to register the toolchain.
Alternatively, click Next to manually enter or change the toolchain properties, and then click
Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 40 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Figure 3-9: Properties for the new toolchain

n Add a new Toolchain L] X

Edit toolchain info

Family: Arm Compiler 6 v
Version (major): 6
Version (minor): ‘ 16 |

Version (patch/update): ‘

Version (build): ‘
Compiler: armclang
Assembler: armasm
Linker: armlink
Archiver: armar
Image Converter: fromelf
@ ‘ < Back Next > Einish Cancel

You must manually enter the toolchain properties if:

o
% e The toolchain properties were not autodetected.

Note e The family, major version, and minor version of the new toolchain are
identical to a toolchain that Arm DS already knows about.

4. In the Preferences dialog box, click Apply.
5. Restart Arm Development Studio.

Results
e The new toolchain is registered with Arm Development Studio.

e When you create a new project, Arm DS shows the new toolchain in the available list of
toolchains.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 41 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Installing and configuring Arm Development Studio

Related information
Reconfigure existing projects to use a newly registered compiler toolchain on page 43

3.11.2 Register a compiler toolchain using the Arm DS command prompt

Use the add_toolchain utility from the command prompt to register a new Arm® Compiler for
Embedded or GCC toolchain.
Before you begin

e Download an Arm Compiler for Embedded or GCC toolchain.

Procedure

1. Open the Arm DS <version> Command Prompt, and enter add toolchain <path>, where
<path> is the directory containing the toolchain binaries. The utility automatically detects the
toolchain properties.

By default, the add_toolchain utility is an interactive tool. To use the
add_toochain utility as a non-interactive tool, add the --non-interactive
option to the command.

For example, on Windows: add_toolchain "C:\Program Files
(x86) \ARM Compiler 5.06u7\bin64" --non-interactive

2. The utility prompts whether you want to register the toolchain with the details it has detected.
If you want to change the details, the utility prompts for the details of the toolchain.

3. Restart Arm Development Studio. You must do this before you can use the toolchain in the Arm
DS environment.

e The toolchain target only applies to GCC toolchains. It indicates what
target platform the GCC toolchain builds for. For example, if your compiler
toolchain binary is named arm-1inux-gnueabihf-gcc, then the target
name is the prefix arm-1inux-gnueabihf. The target field allows Arm DS to
distinguish different toolchains that otherwise have the same version.

e You must manually enter the toolchain properties if:
o The toolchain properties were not autodetected.

o The type, major version, and minor version of the new toolchain are
identical to a toolchain that Arm DS already knows about.

Results
e The new toolchain is registered with Arm Development Studio.

* When you create a new project, Arm DS shows the new toolchain in the available list of
toolchains.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 42 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

Related information
Reconfigure existing projects to use a newly registered compiler toolchain on page 43

3.11.3 Reconfigure existing projects to use a newly registered compiler
toolchain

When you register a new compiler toolchain in Arm® Development Studio, you can reconfigure
existing projects to use the newly registered toolchain.

Before you begin
Register an Arm Compiler for Embedded or GCC toolchain. You can use the IDE or the Arm DS
command prompt.

Procedure

1. Select a new compiler toolchain to use with your project.
a) In the Project Explorer view, right-click your project and select Properties > C/C++ Build >
Tool Chain Editor.
b) Select the new toolchain under the Current toolchain drop-down menu.
c) Click Apply and Close.

2. After you change the toolchain, clean and rebuild the project.
a) Inthe Project Explorer view, select the project, right-click it and select Clean Project.
b) In the Project Explorer view, select the project, right-click it and select Build Project.

3.11.4 Configure a compiler toolchain for the Arm DS command prompt

When you want to compile or build from the Arm DS command prompt, you must select the
compiler toolchain you want to use. You can either specify a default toolchain, so that you do not
need to select a toolchain every time you start the Arm DS command prompt, or you can specify a
toolchain for the current session only.

By default, the Arm DS command prompt is not configured with a compiler
toolchain.

3.11.4.1 Configure a compiler toolchain for the Arm DS command prompt on Linux

Describes how to specify a compiler toolchain using the Linux command-line utility.

Procedure
1. To set a default compiler toolchain, run <install directory>/bin/select default toolchain
and follow the instructions.

2. To specify a compiler toolchain for the current session, run <install directory>/bin/

suite exec --toolchain <toolchain name>

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 43 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Installing and configuring Arm Development Studio

To list the available toolchains, run suite exec with no arguments.

If you specify a toolchain using the suite exec --toolchain command, it
overwrites the default compiler toolchain for the current session.

Example 3-3: Example

To use the Arm® Compiler for Embedded toolchain in the current session, run:

<install directory>/bin/suite _exec --toolchain "Arm Compiler for Embedded 6" bash --

norc

3.11.4.2 Configure a compiler toolchain for the Arm DS command prompt on
Windows

Describes how to specify a compiler toolchain using the Arm DS Command Prompt.

Procedure

1. To set a default compiler toolchain:
a) Select Start > All Programs > Arm DS Command Prompt.
b) To see the available compiler toolchains, enter select default toolchain.
c) From the list of available toolchains, select your default compiler toolchain.

2. To specify a compiler toolchain for the current session:
a) Select Start > All Programs > Arm DS Command Prompt.
b) To see the available compiler toolchains, enter select toolchain.

Using this command overwrites the default compiler toolchain for the current
session.

c) From the list of available toolchains, select the one that you want to use for this session.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 44 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Installing and configuring Arm Development Studio

3.12 Specify plug-in install location

By default, Arm® Development Studio installs plug-ins into the user's home area. You can override
the default settings so that the plug-ins are installed into the Arm DS installation directory. Plug-ins
available in the Arm DS installation directory are available to all users of the host workstation.

Before you begin
e Installation of Arm Development Studio with appropriate licenses applied.

e Access to your Arm Development Studio install.

About this task

You override the default Arm Development Studio configuration location using the Eclipse vmargs
runtime option. The Eclipse vmargs runtime option allows you to customize the operation of the
Java VM to run Eclipse. See the Eclipse runtime options documentation for more information about
the Eclipse vmargs runtime option.

Procedure
1. At your operating system command prompt, enter: <armds install directory>/

bin/armds ide -vmargs -Dosgi.configuration.area=<install directory/sw/ide/

configuration> -Dosgi.configuration.cascaded=false.

On Windows, you must run armds_idec.exe from either the Arm DS Command
Prompt, or directly from the <install directory>/bin directory. Do not run
the armds_idec.exe executable that isin the <install directory>/sw/eclipse
directory.

The armds idec.exe executable in <install directory>/bin acts as a
wrapper for armds _idec.exe iN <install directory>/sw/eclipse. Running
the executable from the <install directory>/bin directory sets up the Arm
Development Studio environment (paths, environment variables, and other
similar items) in the same way as the Arm DS Command Prompt.

2. Install your Eclipse plug-in using your preferred plug-in installation option, for example, the
Eclipse Marketplace.

3. Restart Arm Development Studio when prompted to do so.

Results
Your plug-ins are now installed into the Arm Development Studio <install directory/sw/ide/
configuration> directory and are available to all users of the host workstation.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 45 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Installing and configuring Arm Development Studio

3.13 Development Studio perspective keyboard shortcuts

You can use various keyboard shortcuts in the Development Studio perspective.

You can access the dynamic help in any view or dialog box by using the following:
e On Windows, use the F1 key
e On Linux, use the Shift+F1 key combination.

The following keyboard shortcuts are available when you connect to a target:
Commands view
You can use:
Ctrl+Space
Access the content assist for autocompletion of commands.

Enter
Execute the command that is entered in the adjacent field.

DOWN arrow
Navigate down through the command history.

UP arrow
Navigate up through the command history.

Debug Control view

You can use:
F5
Step at source level including stepping into all function calls where there is debug
information.
ALT+F5
Step at instruction level including stepping into all function calls where there is debug
information.
Fé6
Step at source or instruction level but stepping over all function calls.
F7
Continue running to the next instruction after the selected stack frame finishes.
F8

Continue running the target.

A Connect only connection might require setting the PC register to the
start of the image before running it.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 46 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Installing and configuring Arm Development Studio

F9
Interrupt the target and stop the current application if it is running.

Related information
Commands view

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 47 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

4. Introduction to Arm Debugger

Introduces Arm® Debugger and some important debugger concepts.

4.1 Overview: Arm Debugger and important concepts

Arm® Debugger is part of Arm Development Studio and helps you find the cause of software bugs
on Arm processor-based targets and Fixed Virtual Platform (FVP) targets.

From device bring-up to application debug, it can be used to develop code on an RTL simulator,
virtual platform, and hardware, to help get your products to market quickly.

Arm Debugger supports:

e Loading images and symbols.

e Running images.

e Breakpoints and watchpoints.

e Source and instruction level stepping.

e CoreSight™ and non-CoreSight trace (Embedded Trace Macrocell Architecture Specification v3.0
and above).

e Accessing variables and register values.

o Viewing the contents of memory.

« Navigating the call stack.

o Handling exceptions and Linux signals.

e Debugging bare-metal code.

e Debugging multi-threaded Linux applications.

e Debugging the Linux kernel and Linux kernel modules.
e Debugging multicore and multi-cluster systems, including big.LITTLE™.
e Debugging Real-Time Operating Systems (RTOSs).

e Debugging from the command-line.

e Performance analysis using Arm Streamline.

o A comprehensive set of debugger commands that can be executed in the Eclipse Integrated
Development Environment (IDE), script files, or a command-line console.

o GDB debugger commands, making the transition from open source tools easier.

e A small subset of third party CMM-style commands sufficient for running target initialization
scripts.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 48 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

Using Arm Debugger, you can debug bare-metal and Linux applications with comprehensive and
intuitive views, including synchronized source and disassembly, call stack, memory, registers,
expressions, variables, threads, breakpoints, and trace.

4.2 Debugger concepts
Lists some of the useful concepts to be aware of when working with Arm® Debugger.

AMP
Asymmetric Multi-Processing (AMP) system has multiple processors that may be different
architectures. See Debugging AMP Systems for more information.

Bare-metal
A bare-metal embedded application is one which does not run on an OS.

BBB
The old name for the MTB.

CADI

Component Architecture Debug Interface. This is the API used by debuggers to control
models.

Configuration database

The configuration database is where Arm Debugger stores information about the processors,
devices, and boards it can connect to.

The database exists as a series of .xm1 files, python scripts, . rvec files, .rcf files, .sds files,
and other miscellaneous files in the <installation directory>/sw/debugger/configdb/
directory.

Arm Development Studio comes pre-configured with support for a wide variety of devices
out-of-the-box, and you can view these in the Debug Configuration dialog box in the Arm
Development Studio IDE.

You can also add support for your own devices using the Platform Configuration Editor (PCE)
tool.

Contexts

Each processor in the target can run more than one process. However, the processor

only executes one process at any given time. Each process uses values stored in variables,
registers, and other memory locations. These values can change during the execution of the
process.

The context of a process describes its current state, as defined principally by the call stack
that lists all the currently active calls.

The context changes when:

e A function is called.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 49 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

CTl

DAP

Version 2022.2
Introduction to Arm Debugger

e A function returns.

e Aninterrupt or an exception occurs.

Because variables can have class, local, or global scope, the context determines which
variables are currently accessible. Every process has its own context. When execution of a
process stops, you can examine and change values in its current context.

The Cross Trigger Interface (CTI) combines and maps trigger requests, and broadcasts them
to all other interfaces on the Embedded Cross Trigger (ECT) sub-system. See Cross-trigger
configuration for more information.

The Debug Access Port (DAP) is a control and access component that enables debug access
to the complete SoC through system ports. See About the Debug Access Port for more
information.

Debugger

A debugger is software running on a host computer that enables you to make use of a debug
adapter to examine and control the execution of software running on a debug target.

Debug agent

A debug agent is hardware or software, or both, that enables a host debugger to interact
with a target. For example, a debug agent enables you to read from and write to registers,
read from and write to memory, set breakpoints, download programs, run and single-step
programs, program flash memory, and so on.

gdbserver is an example of a software debug agent.

Debug session

A debug session begins when you connect the debugger to a target for debugging software
running on the target and ends when you disconnect the debugger from the target.

Debug target

A debug target is an environment where your program runs. This environment can be
hardware, software that simulates hardware, or a hardware emulator.

A hardware target can be anything from a mass-produced development board or electronic
equipment to a prototype product, or a printed circuit board.

During the early stages of product development, if no hardware is available, a simulation or
software target might be used to simulate hardware behavior. A Fixed Virtual Platform (FVP)
is a software model from Arm that provides functional behavior equivalent to real hardware.

Even though you might run an FVP on the same host as the debugger, it is
useful to think of it as a separate piece of hardware.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 50 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Introduction to Arm Debugger

Also, during the early stages of product development, hardware emulators are used to verify
hardware and software designs for pre-silicon testing.

Debug adapter

A debug adapter is a physical interface between the host debugger and hardware target.
It acts as a debug agent. A debug adapter is normally required for bare-metal start/stop
debugging real target hardware, for example, using JTAG.

Examples include DSTREAM, DSTREAM-ST, and the ULINK family of debug and trace
adapters.

DSTREAM

DTSL

The Arm DSTREAM family of debug and trace units. For more information, see: DSTREAM
family

Arm Development Studio supports the Arm DSTREAM debug unit, but it is
discontinued and no longer available to purchase.

Debug and Trace Services Layer (DTSL) is a software layer in the Arm Debugger stack.
DTSL is implemented as a set of Java classes which are typically implemented (and possibly
extended) by Jython scripts. A typical DTSL instance is a combination of Java and Jython.
Arm has made DTSL available for your own use so that you can create programs (Java or
Jython) to access/control the target platform.

DWARF

ELF

ETB

ETF

ETM

DWAREF is a debugging format used to describe programs in C and other similar programming
languages. It is most widely associated with the ELF object format but it has been used with
other object file formats.

Executable and Linkable Format (ELF) is a common standard file format for executables,
object code, shared libraries, and core dumps.

Embedded Trace Buffer (ETB) is an optional on-chip buffer that stores trace data from
different trace sources. You can use a debugger to retrieve captured trace data.

Embedded Trace FIFO (ETF) is a trace buffer that uses a dedicated SRAM as either a circular
capture buffer, or as a FIFO. The trace stream is captured by an ATB input that can then be
output over an ATB output or the Debug APB interface. The ETF is a configuration option of
the Trace Memory Controller (TMC).

Embedded Trace Macrocell (ETM) is an optional debug component that enables
reconstruction of program execution. The ETM is designed to be a high-speed, low-power
debug tool that supports trace.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 51 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

ETR

Embedded Trace Router (ETR) is a CoreSight™ component which routes trace data to system
memory or other trace sinks, such as HSSTP.

FVP

Fixed Virtual Platform (FVP) enables development of software without the requirement for
actual hardware. The functional behavior of the FVP is equivalent to real hardware from a
programmers view.

™

Instruction Trace Macrocell (ITM) is a CoreSight component which delivers code
instrumentation output and specific hardware data streams.

jRDDI
The Java APl implementation of RDDI.
Jython
An implementation of the Python language which is closely integrated with Java.
MTB
Micro Trace Buffer. This is used in the Cortex®-MO and Cortex-MO+.
PTM

Program Trace Macrocell (PTM) is a CoreSight component which is paired with a core to
deliver instruction only program flow trace data.

RDDI

Remote Device Debug Interface (RDDI) is a C-level APl which allows access to target debug
and trace functionality, typically through a DSTREAM box, or a CADI model.

Scope
The scope of a variable is determined by the point at which it is defined in an application.

Variables can have values that are relevant within:
e A specific class only (class).

e A specific function only (local).

e A specific file only (static global).

e The entire application (global).

SMP
A Symmetric Multi-Processing (SMP) system has multiple processors with the same
architecture. See Debugging SMP systems for more information.

STM
System Trace Macrocell (STM) is a CoreSight component which delivers code instrumentation
output and other hardware generated data streams.

TPIU

Trace Port Interface Unit (TPIU) is a CoreSight component which delivers trace data to an
external trace capture device.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 52 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Introduction to Arm Debugger

T™MC
The Trace Memory Controller (TMC) enables you to capture trace using:

e The debug interface such as 2-pin serial wire debug.
e The system memory such as a dynamic Random Access Memory (RAM).

e The high-speed links that already exist in the System-on-Chip (SoC) peripheral.

4.3 Overview: Arm CoreSight debug and trace
components

CoreSight™ defines a set of hardware components for Arm®-based SoCs. Arm Debugger uses the
CoreSight components in your SoC to provide debug and performance analysis features.
Examples of common CoreSight components include:
e DAP: Debug Access Port
e ECT: Embedded Cross Trigger
o TMC: Trace Memory Controller
o ETB: Embedded Trace Buffer
o ETF: Embedded Trace FIFO
o ETR: Embedded Trace Router
e ETM: Embedded Trace Macrocell
e PTM: Program Trace Macrocell
e |TM: Instrumentation Trace Macrocell

e STM: System Trace Macrocell

Trace triggers are not supported on Cortex®-M series processors.

Examples of how these components are used by Arm Debugger include:
o The Trace view displays data collected from PTM and ETM components.
e The Events view displays data collected from ITM and STM components.

e Debug connections can make use of the ECT to provide synchronized starting and stopping of
groups of cores. For example, you can use the ECT to:

o Stop all the cores in an SMP group simultaneously.

o Halt heterogeneous cores simultaneously to allow whole system debug at a particular point
in time.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 53 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

If you are using an SoC that is supported out-of-the-box with Arm Debugger, select the correct
platform (SoC) in the Debug Configuration dialog box to configure a debug connection. If you
are using an SoC that is not supported by Arm Debugger by default, then you must first define
a custom platform in Arm Debugger's configuration database using the Platform Configuration
Editor tool.

For all platforms, whether built-in or manually created, you can use the Platform Configuration
Editor (PCE) to easily define the debug topology between various components available on the
platform. See the Platform Configuration Editor topic for details.

4.4 Overview: Debugging multi-core (SMP and AMP),
big.LITTLE, and multi-cluster targets

Arm® Debugger is developed with multicore debug in mind for bare-metal, Linux kernel, or
application-level software development.

Awareness for Symmetric Multi-Processing (SMP), Asymmetric Multi-Processing (AMP), and
big.LITTLE™ configurations is embedded in Arm Debugger, allowing you to see which core, or
cluster a thread is executing on.

When debugging applications in Arm Debugger, multicore configurations such as SMP or
big.LITTLE require no special setup process. Arm Debugger includes predefined configurations,
backed up by the Platform Configuration Editor which enables further customization. The nature
of the connection determines how Arm Debugger behaves, for example stopping and starting all
cores simultaneously in a SMP system.

4.4.1 Debugging SMP systems

From the point of view of Arm® Debugger, Symmetric Multi Processing (SMP) refers to a set of
architecturally identical cores that are tightly coupled together and used as a single multi-core
execution block. Also, from the point of view of the debugger, they must be started and halted
together.

Arm Debugger expects an SMP system to meet the following requirements:
e The same ELF image running on all processors.

e All processors must have identical debug hardware. For example, the number of hardware
breakpoint and watchpoint resources must be identical.

e Breakpoints and watchpoints must only be set in regions where all processors have identical
physical and virtual memory maps. Processors with separate instances of identical peripherals
mapped to the same address are considered to meet this requirement. Private peripherals of
Arm multicore processors is a typical example.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 54 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

Configuring and connecting

To enable SMP support in the debugger, you must first configure a debug session in the Debug
Configurations dialog box. Configuring a single SMP connection is all that you require to enable
SMP support in the debugger.

Targets that support SMP debugging have SMP mentioned against them.

Figure 4-1: Versatile Express A9x4 SMP configuration

Select target

Select the manufacturer, board, project type and debug operation to use,
Currently selected: Arm FVP (Installed with Arm DS) / VE_Cortex_ASx4 / Bare Metal Debug / Debug Cortex-A%:d SMP

Filter platforms

w VE_Cortex_ASd -
w Bare Metal Debug
Debug Cortex-ASMP_D
Debug Cortex-ASMP_1
Debug Cortex-ASMP_2
Debug Cortex-ASMP_3
Debug Cortex-A%kd SMP "

Once connected to your target, use the Debug Control view to work with all the cores in your SMP
system.

Image and symbol loading

When debugging an SMP system, image and symbol loading operations apply to all the SMP
pProcessors.

For image loading, this means that the image code and data are written to memory once, through
one of the processors, and are assumed to be accessible through the other processors at the same
address because they share the same memory.

For symbol loading, this means that debug information is loaded once and is available when
debugging any of the processors.

Running, stepping, and stopping

When debugging an SMP system, attempting to run one processor automatically starts running

all the other processors in the system. Similarly, when one processor stops, either because you
requested it or because of an event such as a breakpoint being hit, then all the other processors in
the system stop.

For instruction level single-stepping commands, stepi and nexti, the currently selected processor
steps one instruction.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 55 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

Figure 4-2: Core O stopped on step i command

2% Debug Control 52 | =4 = O

% AP DR RS DY
~ T smp_primes_ACE-FVP-A% connected
ﬁ ARM_Cortex-AIMP_0 #0 stopped on stepi (5Y5)
ﬁ ARM_Cortex-AIMP_1 #1 stopped (5Y5)
ﬁ ARM_Cortex-ASMP_2 #2 stopped (5Y5)
ﬁ ARM_Cortex-ASMP_3 #3 stopped (5Y5)

Status: connected

The exception to this is when a nexti operation is required to step over a function call, in which
case, the debugger sets a breakpoint and then runs all processors. All other stepping commands
affect all processors.

Depending on your system, there might be a delay between different cores running or stopping.
This delay can be very large because the debugger must run and stop each core individually.
However, hardware cross-trigger implementations in most SMP systems ensure that the delays are
minimal and are limited to a few processor clock cycles.

In rare cases, one processor might stop, and one or more of the other processors might not
respond. This can occur, for example, when a processor running code in secure mode has
temporarily disabled debug ability. When this occurs, the Debug Control view displays the
individual state of each processor, running or stopped, so you can see which ones have failed to
stop. Subsequent run and step operations might not operate correctly until all the processors stop.

Breakpoints, watchpoints, and signals

By default, when debugging an SMP system, breakpoint, watchpoint, and signal (vector catch)
operations apply to all processors. This means that you can set one breakpoint to trigger when
any of the processors execute code that meets the criteria. When the debugger stops due to
a breakpoint, watchpoint, or signal, then the processor that causes the event is listed in the
Commands view.

Breakpoints or watchpoints can be configured for one or more processors by selecting the required
processor in the relevant Properties dialog box. Alternatively, you can use the break-stop-on-cores
command. This feature is not available for signals.

Examining target state

Views of the target state, including Registers, Call stack, Memory, Disassembly, Expressions, and
Variables contain content that is specific to a processor. Views such as Breakpoints, Signals, and
Commands are shared by all the processors in the SMP system, and display the same contents
regardless of which processor is currently selected.

Trace

If you are using a connection that enables trace support, you can view trace for each of the
processors in your system using the Trace view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 56 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

By default, the Trace view shows trace for the processor that is currently selected in the Debug
Control view. Alternatively, you can choose to link a Trace view to a specific processor by using the
Linked: context toolbar option for that Trace view. Creating multiple Trace views linked to specific
processors enables you to view the trace from multiple processors at the same time.

The indexes in the different Trace views do not necessarily represent the same point
in time for different processors.

4.4.2 Debugging AMP Systems

From the point of view of Arm® Debugger, Asymmetric Multi Processing (AMP) refers to a set of
cores which operate in an uncoupled manner. The cores can be of different architectures or of
the same architecture but not operating in an SMP configuration. Also, from the point of view of
the debugger, it depends on the implementation whether the cores need to be started or halted
together.

An example of this might be a Cortex®-A5 device coupled with a Cortex-M4, combining the
benefits of an MCU running an RTOS which provides low-latency interrupt with an application
processor running Linux. These are often found in industrial applications where a rich user-
interface might need to interact closely with a safety-critical control system, combining multiple
cores into an integrated SoC for efficiency gains.

Bare metal debug on AMP Systems

Arm Debugger supports simultaneous debug of the cores in AMP devices. In this case, you need
to launch a debugger connection to each one of the cores and clusters in the system. Each one of
these connections is treated independently, so images, debug symbols, and OS awareness are kept
separate for each connection. For instance, you will normally load an image and its debug symbols
for each AMP processor. With multiple debug sessions active, you can compare content in the
Registers, Disassembly, and Memory views by opening multiple views and linking them to multiple
connections, allowing you to view the state of each processor at the same time.

It is possible to connect to a system in which there is a cluster or big.LITTLE™ subsystem working in
SMP mode, for example, running Linux, with extra processors working in AMP mode for example,
running their own bare-metal software or an RTOS. Arm Debugger is capable of supporting these
devices by just connecting the debugger to each core or subsystem separately.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 57 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to Arm Debugger

4.4.3 Debugging big.LITTLE Systems

A big.LITTLE™ system optimizes for both high performance and low power consumption over a
wide variety of workloads. It achieves this by including one or more high performance processors
alongside one or more low power processors.

Awareness for big.LITTLE configurations is built into Arm® Debugger, allowing you to establish a
bare-metal, Linux kernel, or Linux application debug connection, just as you would for a single core
processor.

For the software required to enable big.LITTLE support in your own QOS, visit the
big.LITTLE Linaro git repository.

Bare-metal debug on big.LITTLE systems

For bare-metal debugging on big.LITTLE systems, you can establish a big.LITTLE connection in Arm
Debugger. In this case, all the processors in the big.LITTLE system are brought under the control
of the debugger. The debugger monitors the power state of each processor as it runs and displays
it in the Debug Control view and on the command-line. Processors that are powered-down are
visible to the debugger, but cannot be accessed. The remaining functionality of the debugger is
equivalent to an SMP connection to a homogeneous cluster of cores.

Linux application debug on big.LITTLE systems

For Linux application debugging on big.LITTLE systems, you can establish a gdbserver connection
in Arm Debugger. Linux applications are typically unaware of whether they are running on a big
processor or a LITTLE processor because this is hidden by the operating system. Therefore, there
is no difference when debugging a Linux application on a big.LITTLE system as compared to
application debug on any other system.

4.5 Overview: Debugging Arm-based Linux applications

Arm® Debugger supports debugging Linux applications and libraries that are written in C, C++, and
Arm assembly.

The integrated suite of tools in Arm Development Studio enables rapid development of optimal
code for your target device.

For Linux applications, communication between the debugger and the debugged application is
achieved using gdbserver. See Configuring a connection to a Linux application using gdbserver for
more information.

Related information
Configuring a connection to a Linux kernel on page 125
Configuring a connection to a Linux application using gdbserver on page 122

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 58 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Introduction to Arm Debugger

About debugging shared libraries

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 59 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to the IDE

5. Introduction to the IDE

The Arm® Development Studio Integrated Development Environment (IDE) is Eclipse-based,
combining the Eclipse IDE from the Eclipse Foundation with the compilation and debug technology
of Arm tools.

It includes:

Project Explorer
The project explorer enables you to perform various project tasks such as adding or removing
files and dependencies to projects, importing, exporting, or creating projects, and managing
build options.

Editors
Editors enable you to read, write, or modify C/C++ or Arm assembly language source files.

Perspectives and views
Perspectives provide customized views, menus, and toolbars to suit a particular type of
environment. Arm Development Studio uses the Development Studio perspective by
default. To switch perspectives, from the main menu, select Window > Perspective > Open
Perspective.

5.1 IDE Overview

The Integrated Development Environment (IDE) contains a collection of views that are associated
with a specific perspective.

Arm® Development Studio uses the Development Studio perspective as default.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 60 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to the IDE

Figure 5-1: IDE in the Development Studio perspective.

© Console | I Commands ®-Variables = Registers ‘=l Memory 4 Disassembly + HE|#8-8v=0
555555555555

1. The main menu and toolbar are both located at the top of the IDE window. Other toolbars, that
are associated with specific features, are located at the top of each perspective or view.

Project Explorer view to create, build, and manage your projects.

Editor view to inspect and modify the content of your source code files. The tabs in the editor
area show the files that are currently open for editing.

4. During a debug session this area typically shows the Registers and Breakpoints views. You can
drag and drop other views into this area.

Debug Control view to create and control debug connections.

6. During a debug session this area typically shows views that are associated with debug inputs
and outputs, such as the Commands and Console views.

On exit, your settings save automatically. When you next open Arm Development Studio, the
window returns to the same perspective and views.

For further information on a view, click inside it and press F1 to open the Help view.

Customize the IDE

You can customize the IDE by changing the layout, key bindings, file associations, and color
schemes. These settings can be found in Window > Preferences. Changes are saved in your
workspace. If you select a different workspace, then these settings might be different.

Related information
Using the IDE on page 62
Perspectives in Arm Development Studio
Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 61 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Introduction to the IDE

5.2 Using the IDE

The Arm® Development Studio IDE can be customized. It is possible to choose the views you can
see by following the instructions in this section.

5.2.1 Changing the default workspace

The workspace is an area on your file system to store files and folders related to your projects,
and your IDE settings. When Arm® Development Studio launches for the first time, a default
workspace is automatically created for you in c:\Users\<user>\Development Studio Workspace.

About this task

Arm recommends that you select a dedicated workspace folder for your projects.
If you select an existing folder containing resources that are not related to your
projects, you cannot access them in Arm Development Studio. These resources
might also cause a conflict later when you create and build projects.

Arm Development Studio automatically opens in the last used workspace.

Procedure
1. Select File > Switch Workspace > Other.... The Eclipse Launcher dialog box opens.
Figure 5-2: Workspace Launcher dialog box

n Eclipse Launcher X

Select a directory as workspace

Arm Development Studio IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | C:\Users\<user>\Development Studio Workspace v Browse...

» Recent Workspaces

» Copy Settings

@

2. Click Browse... to choose your workspace, and click OK.

Results
Arm Development Studio relaunches in the new workspace.
Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 62 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Introduction to the IDE

5.2.2 Switching perspectives

Perspectives define the layout of your selected views and editors in the Arm® Development Studio
IDE. Each perspective has its own associated menus and toolbars.

Procedure

1. Go to Window > Perspective > Open Perspective > Other.... This opens the Open Perspective
dialog box.

2. Select the perspective that you want to open, and click OK.

Figure 5-3: Open Perspective dialog box

B Open Perspective O X

BgC/C++
@ CMSIS Pack Manager
15 Debug
* Development Studio (default)
W DS Debug
e Git
&;‘ Java
Ee?]ava Browsing
'Eg’ Java Type Hierarchy
> PyDev
EBRemote System Explorer
I(Resource
£ Team Synchronizing

o[ane

Results
Your perspective opens in the workspace.

Related information
Arm Debugger perspectives and views

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 63 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Introduction to the IDE

5.2.3 Adding views

Views provide information for a specific function, corresponding to the active debug connection.
Each perspective has a set of default views. You can add, remove, or reposition the views to
customize your workspace.

Procedure
1. Click the + button in the area you want to add a view.

Figure 5-4: Adding a view in an area

0
&
1l
0
o

[Project Explorer §2 +%
App Console

Cache Data

Debug Hardware Configure IP

Debug Hardware Firmware Installer

Events

X7 B & 0 M

Expressions

=
—

Functions
History
MMU/MPU
Modules
05 Data
Overlays
Screen
Scripts
Stack
Target
Terminal
Trace

Trace Control

S8% e IS E® [dii I

Other...

2. Choose a view to add, or click Other... to open the Show View dialog box to see a complete list
of available views.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 64 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Introduction to the IDE

Figure 5-5: Adding a view in Arm Development Studio

B show view o X
type filter text
~ (= Arm Debugger -
B App Conscle

& Arm Asm Info

@5 Breakpoints

[0 Cache Data

B Commands

[0 Data

1""# Debug Control

2% Debug Hardware Configure IP

&P Debug Hardware Firmware Installer
1%l Disassembly

&= Events

Y Expressions

f)} Functions

| History v

3. Select the view you want to open, and click OK.

Results
The view opens in the selected area.

Related information
Arm Debugger perspectives and views

5.3 Personalize your development environment

Arm® Development Studio Integrated Development Environment (IDE) has many settings, called
Preferences, that are available for you to adjust and change. Use these Preferences to adapt the
IDE to best support your own personal development style.

When you launch Arm Development Studio for the first time, the Preferences Wizard takes you
through the process of setting up the IDE.

This wizard presents the most commonly changed Preferences to customize for your requirements.
These include specifying the start-up workspace location, selecting a theme, and tweaking the code
editing format.

e If you have upgraded from a previous version of Arm Development Studio and
had your workspace preferences already set up, your preferences remain the
same.

o These preferences are only saved in the current workspace. To copy your
preferences to another workspace, select File > Export... to open the Export

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 65 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to the IDE

wizard. Then select General > Preferences and choose the location you want to
export your preferences to.

e You can click Apply and Close at any point during your wizard. The Preferences
Wizard applies changes up to where you have modified the options and leaves
the rest of the settings as default.

e There are more IDE configuration options in the Preferences dialog which
allow you to make further in-depth changes to your IDE settings. For example,
extra code formatting and syntax highlighting options. To open the Preferences
dialog, from the main menu, select Window > Preferences.

e You can click Skip and ignore the Preferences Wizard and return to the wizard
later to make changes. To restart the wizard later, in the Preferences dialog,
select Arm DS > General > Start Preferences Wizard.

o To disable the Preferences Wizard when you launch Arm Development Studio,
add arM_DS_DISABLE PREFS WIZARD as an environment variable in your operating
system.

e When switching Arm Development Studio between the light and dark themes,
to apply your selection you must restart Arm Development Studio.

Related information

Installing and configuring Arm Development Studio on page 21
Licensing Arm Development Studio on page 27

Using the IDE on page 62

Language settings on page 32

Preferences dialogue box

5.4 Launch the Arm Development Studio command
prompt

To configure the same features of Arm® Development Studio that you can configure through the
GUI, you can use the Arm Development Studio command prompt.

About this task
The Arm Development Studio command prompt is useful when:

e You want to run scripts or automate tasks.

e You are more comfortable working with the command line.

You can use the Arm Development Studio command prompt to perform operations such as:
e Registering and configuring a compiler toolchain.

e Selecting and using a compiler.

e Running a model.

e Launching Graphics Analyzer or Arm Streamline.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 66 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Introduction to the IDE

e Importing, building, and cleaning Eclipse projects and uVision® projects.
e Configuring Arm Debugger.

o Configuring a connection to a built-in Fixed Virtual Platform (FVP).

e Batch updating firmware for the DSTREAM family of products.

Procedure
Launch the command prompt for your system:

On Windows:

o Select Start > All Programs > Arm Development Studio > Arm Development Studio
Command Prompt.

On Linux:
1. Open a new terminal in your preferred shell.

2. Change directory to the vin directory inside your Arm Development Studio
installation directory. For example: cd /opt/arm/developmentstudio-2020.0/bin.

3. Run ./suite exec.

Example 5-1: Example: Arm Development Studio command prompt usage scenarios

e Configure a compiler toolchain
On Windows:
o Set a default compiler toolchain:
1. Follow the procedure to launch the command prompt.
2. To see the available compiler toolchains, run select default toolchain.
3. Select your preferred default compiler toolchain from the available list.
o Specify a compiler toolchain for the current session:
1. Follow the procedure to launch the command prompt.
2. To see the available compiler toolchains, run select toolchain.
3. Select your preferred compiler toolchain for this session from the available list.
On Linux:
o Set a default compiler toolchain:
1. Follow the procedure to launch the command prompt.
2. Run ./select default toolchain.
3. Select your preferred default compiler toolchain from the available list.
o Set a compiler toolchain for the current session:
1. Follow the procedure to launch the command prompt.
2. Run ./suite exec --toolchain <toolchain name> <preferred shell>.

o Set Arm Compiler for Embedded 6 as your compiler toolchain

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 67 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Introduction to the IDE

On Windows:

1.

2.
3.
4

Follow the procedure to launch the command prompt.
To see the available compiler toolchains, run select toolchain.
Select Arm Compiler for Embedded 6 from the list.

To verify that the environment has been configured correctly, run armclang --vsn to
see the version information and license details.

On Linux:

1.
2.
3.

Follow steps 1 and 2 of the procedure to launch the command prompt.
Run ./suite_exec --toolchain "Arm Compiler 6" <preferred shell>

To verify that the environment has been configured correctly, run . /armclang --vsn
to see the version information and license details.

e Connect to an Arm FVP Cortex-A9x4 model

On Windows:
1. Follow the procedure to launch the command prompt.
2. Run armdbg --cdb-entry "Arm FVP::VE Cortex A9x4::Bare Metal Debug::Bare
Metal Debug::Cortex-A9x4 SMP".
On Linux:
1. Follow the procedure to launch the command prompt.
2. Run ./armdog --cdb-entry "Arm FVP::VE Cortex A9x4::Bare Metal Debug::Bare

Metal Debug::Cortex-A9x4 SMP".

e Connect to an Arm FVP Cortex-A53x1 and specify an image to load
On Windows:

1.
2.

Follow the procedure to launch the command prompt.

Run armdbg --cdb-entry "Arm FVP (Installed with Arm DS)::Base A53x1l::Bare
Metal Debug::Bare Metal Debug::Cortex—-A53" --cdb-entry-

param model params="-C bp.secure memory=false" --image "C:

\<path to workspace folder>\HelloWorld\Debug\HelloWorld.axf".

On Linux:

1.
2.

Follow the procedure to launch the command prompt.

Run ./armdbg --cdb-entry "Arm FVP (Installed with Arm

DS) : :Base A53x1l::Bare Metal Debug::Bare Metal Debug::Cortex-A53" --
cdb-entry-param model params="-C bp.secure memory=false" --image
"<path to_workspace folder>/HelloWorld/Debug/HelloWorld.axf".

Related information
Run the Arm Development Studio IDE from the command-line to clean, build, and import projects

on page 80

Configuring debug connections in Arm Debugger
Overview: Running Arm Debugger from the command-line or from a script
Configuring a connection from the command-line to a built-in FVP

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidentia
Page 68 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Introduction to the IDE

Register a compiler toolchain using the Arm DS command prompt

5.5 Headless tools in the Arm Development Studio
command prompt

Use the Arm® Development Studio command prompt to run features of the Arm Development
Studio IDE without the GUI. You might want to do this to automate certain tasks.

The following commands run the Arm Development Studio IDE from the command prompt:
e On Windows: armds_idec.exe

e On Linux: armds_ide
You must specify a headless application as an argument to the -application option.

There are two headless applications provided with Arm Development Studio:
e Use com.arm.cmsis.pack.project.headlessbuild to clean, build, and import Eclipse projects.

e Use com.arm.cmsis.pack.uv.headlessuvimport to clean, build, and import uVision® projects.
You can also specify the following options as necessary:

Table 5-1: Arm DS IDE options

Option Description
- s e

-nosplash Disables the Arm Development Studio IDE splash screen.

--launcher.suppressErrors Causes errors to be printed to the console instead of being reported
in a graphical dialog box.

-data <workspaceDir> Specify the location of your workspace.

-import <projectDir>[/projectName.uvprojx] Import the project from the specified directory into your workspace.

If you are using
com.arm.cmsis.pack.uv.headlessuvimport toimporta
uVision project, you must specify the project file here.

Use this option multiple times to import multiple projects.

-build <projectName>[/<configName>] | all Build the project with the specified name, or all projects in your
workspace.

By default, this option builds all the configurations in each project.
You can limit this action to a single configuration, such as Debug or
Release, by specifying the configuration name immediately after
your project name, separated with '/",

Use this option multiple times to build multiple projects.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 69 of 222

Arm® Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2
Introduction to the IDE

Option

-cleanBuild <projectName>[/<configName>]

all

! Description

Clean and build the project with the specified name, or all projects

in your workspace.

By default, this option cleans and builds all the configurations in
each project. You can limit this action to a single configuration,
such as Debug or Release, by specifying the configuration name
immediately after your project name, separated with '/".

Use this option multiple times to clean and build multiple projects.

-cmsisRoot <path>

-help

Set the path to the CMSIS Packs root directory

Prints the list of available arguments.

Related information

Launch the Arm Development Studio command prompt on page 66
Run the Arm Development Studio IDE from the command-line to clean, build, and import projects

on page 80

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

6. Projects and examples in Arm
Development Studio

Describes how to work with projects in Arm® Development Studio. Also lists the example projects
we provide, and how to import them into your workspace.

6.1 Working with projects

Projects are top level folders in your workspace that contain related files and sub-folders. A project
must exist in your workspace before you add a new file or import an existing file.

6.1.1 Project types

Different project types are provided with Eclipse, depending on the requirements of your project.

Bare metal projects require a software license for Arm® Compiler for Embedded to
successfully build an ELF image.

Bare-metal Executable
Uses Arm Compiler for Embedded to build a bare-metal executable ELF image.
Bare-metal Static library

Uses Arm Compiler for Embedded to build a library of ELF object format members for a bare-
metal project.

It is not possible to debug or run a stand-alone library file until it is linked into
an image.

Executable

Uses the GNU Compilation Tools to build a Linux executable ELF image.
Shared Library

Uses the GNU Compilation Tools to build a dynamic library for a Linux application.
Static library

Uses the GNU Compilation Tools to build a library of ELF object format members for a Linux
application.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 71 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

It is not possible to debug or run a stand-alone library file until it is linked into
an image.

Makefile project

Creates a project that requires a makefile to build the project. However, Eclipse does not
automatically create a makefile for an empty Makefile project. You can write the makefile
yourself or modify and use an existing makefile.

Eclipse does not modify Makefile projects.

Build configurations
By default, the new project wizard provides two separate build configurations:

Debug

The debug target is configured to build output binaries that are fully debuggable, at the
expense of optimization. It configures the compiler optimization setting to minimum (level 0),
to provide an ideal debug view for code development.

Release

The release target is configured to build output binaries that are highly optimized, at the
expense of a poorer debug view. It configures the compiler optimization setting to high (level
3).

In all new projects, the pebug configuration is automatically set as the active configuration. You can
change this in the C/C++ Build Settings panel of the Project Properties dialog box.

C project

This does not select a source language by default and leaves this decision up
to the compiler. Both GCC and Arm Compiler for Embedded default to C for
.c files and C++ for . cpp files.

C++ project
Selects C++ as the source language by default, regardless of file extension.

In both cases, the source language for the entire project a source directory, or
individual source file can be configured in the build configuration settings.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 72 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

6.1.2 Create a new C or C++ project

Create a new C or C++ project in Arm® Development Studio.

Procedure
1. Select File > New > Project... from the main menu.
2. Expand the C/C++ group, select either C Project or C++ Project, and click Next.

C project
This does not select a source language by default and leaves this decision

up to the compiler. Both GCC and Arm Compiler for Embedded default to
C for .c files and C++ for . cpp files.

C++ project
Selects C++ as the source language by default, regardless of file extension.

In both cases, the source language for the entire project, a source directory or
individual source file can be configured in the build configuration settings.

3. Enter a Project name.

4. Leave the Use default location option selected so that the project is created in the default
folder shown. Alternatively, deselect this option and browse to your preferred project folder.

5. Select the type of project that you want to create.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 73 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-1: Creating a new C project

r [}
= C Project LEIM

C Project —>

Create C project of selected type

Project name: myCProject

Uze default location

Location: | CADS-5_Workspace\myCProject Browse...

Project type: Toolchains:
4 [= Executable ARM Compiler 5 (D5-5 built-in)
| ® Empty Project| ARM Compiler 6 (DS-5 built-in)
@ Hello World ANSI C Project GCC 4.x [arm-linux-gnueabihf] (D5-5 built-in]
b (= Shared Library GCC for ARM Bare-metal
[» [= Static Library MinGW GCC

[= Makefile project

Show project types and toolchains enly if they are supported on the platform

@ < Back Ned¢> || Enish || Cancel

L% =

6. Select a Toolchain.

7. Click Finish to create your new project.

Results
You can view the project in the Project Explorer view.

6.1.3 Creating an empty Makefile project
Describes how to create an empty C or C++ Makefile project for an Arm Linux target:

Procedure

1. Create a new project:
a) Select File > New > Project... from the main menu.
b) Expand the C/C++ group, select either C Project or C++ Project, and click Next.
c) Enter a project name.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 74 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Projects and examples in Arm Development Studio

d) Leave the Use default location option selected so that the project is created in the default
folder shown. Alternatively, deselect this option and browse to your preferred project
folder.

e) Expand the Makefile project group.

f) Select Empty project in the Project type panel.

g) Select the toolchain that you want to use when building your project. If your project is for
an Arm Linux target, select the appropriate GCC toolchain. You might need to download a
GCC toolchain if you have not done so already.

h) Click Finish to create your new project. The project is visible in the Project Explorer view.

2. Create a Makefile, and then edit:

a) Before you can build the project, you must have a Mmakefile that contains the compilation
tool settings. The easiest way to create one is to copy the Mmakefile from the example
project, nello and paste it into your new project. The nello project is in the Linux examples
provided with Arm® Development Studio.

b) Locate the line that contains oBJs = hello.o.

c) Replace helio.0 with the names of the object files corresponding to your source files.

d) Locate the line that contains TARGET =hello.

e) Replace ne110 with the name of the target image file corresponding to your source files.
f) Save the file.

g) Right-click the project and then select Properties > C/C++ Build. In the Builder Settings

tab, ensure that the Build directory points to the location of the Makefile.
3. Add your C/C++ files to the project.

Next steps
Build the project. In the Project Explorer view, right-click the project and select Build Project.

Related information
Create a new Makefile project with existing code on page 75

6.1.4 Create a new Makefile project with existing code

You can create a new Makefile project in Arm® Development Studio with your existing source
code.

About this task
The following procedure describes how to create a new Makefile project in the same directory as
your source code.

Procedure

1. Create a Makefile project:
a) Select File > New > Project... from the main menu.
b) Expand the C/C++ group, select Makefile Project with Existing Code, and click Next.
c) Enter a project name and enter the location of your existing source code.
d) Select the toolchain that you want to use for Indexer Settings. Indexer Settings provide
source code navigation in the Arm Development Studio IDE.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 75 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Projects and examples in Arm Development Studio

Figure 6-2: Creating a new Makefile project with existing code

e Mew Project | = @
Import Existing Code

Create a new Makefile project from existing code in that same directory

Project Mame
My_Project

Existing Code Location

C:\My_Project

Languages

[: C++

Teolchain for Indexer Settings

<nonex
ARM Compiler 5 (D5-5 built-in)

ARM Compiler 6 (D5-5 built-in)
GCC 4.x [arm-linux-gnueabihf] (D5-5 built-in)
GCC for ARM Bare-metal

Show only available toclchains that support this platferm

@ net> | [Finish | [Cancel |

e) Click Finish to create your new project. The project and source files are visible in the
Project Explorer view.

2. Create a Makefile:

a) Before you can build the project, you need to have a Mmakefile that contains the
compilation tool settings. The easiest way to create one is to copy the Makefile from an
example project, and paste it into your new project.

b) Edit the Mmakerfile for your new project.

c) Right-click the project and then select Properties > C/C++ Build to access the build
settings. In the Builder Settings tab, check that the Build directory points to the location of
the Makefile.

3. Add any other source files you need to the project.
4. Build the project. In the Project Explorer view, right-click the project and select Build Project.

Related information
Creating an empty Makefile project on page 74

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 76 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

6.1.5 Setting up the compilation tools for a specific build configuration

The C/C++ Build configuration panels enable you to set up the compilation tools for a specific build
configuration. These settings determine how the compilation tools build an Arm executable image
or library.

Procedure
1. In the Project Explorer view, right-click the source file or project and select Properties.
2. Expand C/C++ Build and select Settings.

3. The Configuration panel shows the active configuration. To create a new build configuration or
change the active setting, click Manage Configurations....

4. The compilation tools available for the current project, and their respective build configuration
panels, are displayed in the Tool Settings tab. Click on this tab and configure the build as
required.

Makefile projects do not use these configuration panels. The Makefile must
contain all the required compilation tool settings.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 77 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2

Projects and examples in Arm Development Studio

Figure 6-3: Typical build settings dialog box for a C project

Build Variables
Environment
Logging
Settings
Tool Chain Editor
4 C/C++ General
Code Analysis
Documentation
File Types
Formatter
Indexer
Language Mappings
Paths and Symbols
Preprocessor Include Pz
Project References
Run/Debug Settings

p
£ Properties for HelloWorld —n|n(E)
type filter text Settings o .
> Resource |
-
Builders =
4 C/C++ Build Configuration: [Debug [Active] ,] [.. e Confie

% Tool Settings | # Build Steps |

Build Artifactl @ Binary Parsers | @3 Error Parsers

4 1 ARM C Compiler 5
(22 Target
(2 Preprocessor
(2 Includes
(% Source Language
(2 Optimizations
(2 Debugging
(22 Warnings and Errors
(2 Miscellaneous

4 1% ARM Assembler 5
["% Target
(2 Preprocessor

Command: armcc

All options: _Qp -g

Expert settings:
Command
line pattern:

S{COMMAND} S{FLAGS} ${OUTPUT_FLAG} S{OUTPUT_PREFIX}S{OUTPUT} S{INPUTS}

m

(2 Debugging
(22 Warnings and Errors
(2 Miscellaneous
4 %) ARM Linker 5
(2 Target
(2 Image Layout
(2 Libraries
(2 Optimizations
(2 Additional Information
(2 Warnings and Errors

(2 Miscellaneous

« 1 | »

o JI

‘@ Cancel J

C

5. Click OK.

Results
The updated settings for your build configuration are saved.

6.1.6 Configuring the C/C++ build behavior

A build is the process of compiling and linking source files to generate an output file. A build can
be applied to either a specific set of projects or the entire workspace. It is not possible to build an
individual file or sub-folder.

Arm® Development Studio IDE provides an incremental build that applies the selected build
configuration to resources that have changed since the last build. Another type of build is the
Clean build that applies the selected build configuration to all resources, discarding any previous
build states.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 78 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

Automatic

This is an incremental build that operates over the entire workspace and can run
automatically when a resource is saved. This setting must be enabled for each project by
selecting Build on resource save (Auto build) in the Behaviour tab. By default, this behavior
is not selected for any project.

Figure 6-4: Workbench build behavior

& Properties for HelloWorld uﬂ‘g
type filter text C/C++ Build =14 v v
Resource
Builders
C/C++ Build Configuration: |Debug [Active] 'J [Manag: Configurations...

C/C++ General
Project References

Run/Debug Settings = Builder Seﬂings} @ Behavior | & Refresh Policy |

Build settings

|¥] Stop on first build error ["]Enable parallel build
@ Use optimal jobs (4)

Use unlimited jobs

Workbench Build Behavior
Workbench build type: Make build target:

[Build on resource save (Auto build) | all Variables

Note: See Workbench automatic build preference

|¥] Build (Incremental build) all Variables...
[¥] Clean clean

‘ Restore Qefauits] [Apply l

@ [0K J [Cancel]

You must also ensure that Build Automatically is selected from the Project menu. By default,
this menu option is selected.

Manual

This is an incremental build that operates over the entire workspace on projects with Build
(Incremental build) selected. By default, this behavior is selected for all projects.

You can run an incremental build by selecting Build All or Build Project from the Project
menu.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 79 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

Manual builds do not save before running so you must save all related files
before selecting this option! To save automatically before building, you

can change your default settings by selecting Preferences... > General >
Workspace from the Window menu.

Clean

This option discards any previous build states including object files and images from the
selected projects. The next automatic or manual build after a clean, applies the selected build
configuration to all resources.

You can run a clean build on either the entire workspace or specific projects by selecting
Clean... from the Project menu. You must also ensure that Clean is selected in the C/C++
Build > Behaviour tab of the Preferences dialog box. By default, this behavior is selected for
all projects.

Build order is a feature where inter-project dependencies are created and a specific build order
is defined. For example, an image might require several object files to be built in a specific order.
To do this, you must split your object files into separate smaller projects, reference them within a
larger project to ensure they are built before the larger project. Build order can also be applied to
the referenced projects.

6.1.7 Run the Arm Development Studio IDE from the command-line to
clean, build, and import projects

You can run Arm® Development Studio IDE from the command-line to clean, build, and import
Eclipse projects and Vision® projects. This might be useful when you want to create scripts to
automate build procedures.

Before you begin

e Ensure that the Arm Development Studio IDE is closed.

Procedure
1. Launch the command-line console.

e On Windows, select Start > All Programs > Arm Development Studio > Arm DS Command
Prompt.

e On Linux, run <install directory>/bin/suite exec <shell>to open a shell.
2. Run armds_idec.exe (0n Windows) or armds_ide (on Linux) with the necessary options.

On Windows, you must run armds_idec.exe from either the Arm DS Command
Prompt, or directly from the <install directory>/bin directory. Do not run
the armds_idec.exe executable that is in the <install directory>/sw/eclipse
directory.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 80 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

The armds_idec.exe executable in <install directory>/bin acts asa
wrapper for armds_idec.exe in <install directory>/sw/eclipse. Running
the executable from the <install directory>/bin directory sets up the Arm
Development Studio environment (paths, environment variables, and other
similar items) in the same way as the Arm DS Command Prompt.

For example:
"C:\Program Files\Arm\Development Studio <version>\bin\armds idec.exe"

-nosplash -application com.arm.cmsis.pack.project.headlessbuild -data

"C:\path\to\your\workspace" -cleanBuild startup Cortex-R8

a) You must specify one of the following application options:

L Specify -application com.arm.cmsis.pack.project.headlessbuild to build, clean, and
import existing Eclipse projects.

o Specify -application com.arm.cmsis.pack.uv.headlessuvimport tO build, clean, and
import existing pVision projects.

b) Specify additional options as required. See Headless tools in the Arm Development Studio
command prompt for more information on the available options.

Example 6-1: Example: Build and clean projects with the Arm Development Studio command-
line

e On Windows, import, clean, and build an Eclipse project.

armds idec.exe -nosplash -application com.arm.cmssis.pack.project.headlessbuild
-data C:<\path\to\workspace> -import C:<\path\to\project\directory> -cleanBuild
<projectName>

e On Windows, clean and build all the projects in a specified workplace.

armds_idec.exe -nosplash -application com.arm.cmsis.pack.project.headlessbuild -
data C:<\path\to\workspace> -cleanBuild all

e On Linux, import and build multiple Eclipse projects.

armds_ide -nosplash -application com.arm.cmsis.pack.project.headlessbuild -data </
path/to/workspace> —-import <path/to/projectl> —-import <path/to/project2> -build
<projectl> -build <project2>

e On Windows, build an Eclipse project's Release configuration.

armds idec.exe -nosplash -application com.arm.cmsis.pack.project.headlessbuild -
build <project/Release>

e On Linux, clean and build the Debug configurations of multiple Eclipse projects in your
workspace.

armds_ide -nosplash -application com.arm.cmsis.pack.project.headlessbuild -data </
path/to/workspace> -cleanBuild <projectl/Debug> -cleanBuild <project2/Debug>

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 81 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

e On Windows, import a pVision project.
armds_idec.exe -nosplash -application com.arm.cmsis.pack.uv.headlessuvimport -data
C:<\path\to\workspace> -import <path/to/projectName.uvprojx>

e On Linux, import multiple uVision projects, then clean and build all projects in your workspace.
armds_ide -nosplash -application com.arm.cmsis.pack.uv.headlessuvimport -

data </path/to/workspace> -import <path/to/projectl.uvprojx> —import <path/to/
project2.uvprojx> -cleanBuild all

Related information
Launch the Arm Development Studio command prompt on page 66
Headless tools in the Arm Development Studio command prompt on page 69

6.1.8 Updating a project to a new toolchain

If you have several products installed, only the latest toolchain is listed in the New Project wizard.
Therefore, if you have projects that use an older toolchain, you must update them to the latest
toolchain.

Procedure

1. Right-click on the project in the Project Explorer view, and select Properties.
2. Expand C/C++ Build and select Tool Chain Editor.
3. Select the toolchain from the Current toolchain drop-down list and click OK.

6.1.9 Add a source file to your project

You can add existing source files to your Arm® Development Studio project. If you want to add a
new source file to your project see Add a new source file to your project.

Procedure
You can add existing source files to your project using one of the following methods:

> You can create source files and then add them to the project:
1. Create files on your local system.
2. Drag and drop the files into the project folder structure in the Project Explorer view of
Arm Development Studio.
In the File Operation dialog box, select whether you want to ** Copy files** or Link to
Files. Click OK.
o Import existing source files:
1. Select File > Import > General > File System.
2. In the File system dialog box:

a. In From directory, enter directory containing the existing source files.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 82 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

b. Select the required files in the list of files for the selected directory.
In Into Folder, click Browse... and select the required project folder.

d. Ensure the Options are set as you require.

e. Click Finish.

Results
The source file is visible in the Project Explorer view. If the files do not show in the project, update
the views in Arm Development Studio by selecting File > Refresh from the main menu.

Related information
Perspectives and Views
Eclipse online documentation: Code templates

6.1.10 Add a new source file to your project

You can add new source files to your Arm® Development Studio project. If you want to add an
existing source file to your project see Add a source file to your project.

Procedure
1. Access the New Source File wizard using one of the following methods:

¢ In the Project Explorer, right-click on the project and select New > Source File to open the
New Source File wizard.

e From the main menu bar, select File > New > Other > C/C++ > Source File. Then click
Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 83 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-5: Adding a new source file to your project

* New Source File O X

Source File
C

Create a new source file, ==l
Source folger:| HelloWorld/src ‘ Browse...
Source file: | mynewfile.c ‘
Template: Default C source template ~ Configure...

\:) | Einish | Cancel

2. Update the fields in the New Source File dialog box as required:

¢ Source folder

Enter the source folder where the new source file will be saved. If this field is not already
populated with the required source folder, click Browse... and select a source folder from
the required project.

¢ Source file

Enter a name for the new source file including the file extension.

¢« Template

Select a source file template from the drop-down list. The default options are:
o <None>

o Default C++ source template

o Default C++ test template

o Default C source template

The default templates only provide basic metadata about the newly created file, that is, the
author and the date it was created.

To use your own source file template, click Configure and the Code Templates preference
panel opens, where you can add or configure your own templates.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 84 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2

Projects and examples in Arm Development Studio

Figure 6-6: Code template configuration

* Preferences (Filtered) O »
‘ type filter text X ‘ Code Templates = v i
¥ Gl Configure generated code and comments;
v Code Style s
S
Code Template) LOmHent New...
» Code =
v Files Edit..
» C++ Source File Remove
» C++ Header File
~ C Source File Import...
Default C source template Export...
» C Header File
» Assembly Source File Export All...
> Text
Pattern:
${filecomment}
${includes}
${declarations}
[] Automatically add comments for new methods and classes
< 5 __Restore Qefaults: _ Apply
@ Lt;-,l ;ﬁ‘; Apply and Close Cancel

3. Click Finish.

Results

The new source file is visible in the Project Explorer view.

Related information
Perspectives and Views

Eclipse online documentation: Code templates

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 85 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Projects and examples in Arm Development Studio

6.1.11 Sharing Arm Development Studio projects

You can share Arm® Development Studio projects between users if necessary.

o There are many different ways to share projects and files, for example, using a
source control tool. This topic covers the general principles of sharing projects
and files using Arm Development Studio, and not the specifics of any particular
tool.

o To share files, it is recommended to do so at the level of the project and not
the workspace. Your source files in Arm Development Studio are organized into
projects, and projects exist in your workspace. A workspace contains many files,
including files in the .metadata directory, that are specific to an individual user
or installation.

In each project, the files that must be shared beyond just your source code are:

e .project - Contains general information about the project type, and the Arm Development
Studio plug-ins to use to edit and build the project.

e .cproject - Contains C/C++ specific information, including compiler settings.

Arm Development Studio places built files into the project directory, including auto-generated
makefiles, object files, and image files. Not all files have to be shared. For example, sharing an auto-
generated makefile might be useful to allow building the project outside of Arm Development
Studio, but if projects are only built in Arm Development Studio then this is not necessary.

You must be careful when creating and configuring projects to avoid hard-coded references to tools
and files outside of Arm Development Studio that might differ between users.

To ensure that files outside of Arm Development Studio can be referenced in a user agnostic way,
use the ${workspace_loc} built-in variable or custom environment variables.

6.1.12 Working sets

Describes what working sets are, and how to use them in Arm® Development Studio.

6.1.12.1 About working sets

A working set enables you to group projects together and display a smaller subset of projects.

The Project Explorer view usually displays a full list of all your projects associated with the current
workspace. If you have a lot of projects it can be difficult to navigate through the list to find the
project that you want to use.

To make navigation easier, group your projects into working sets. You can select one or more
working sets at the same time, or you can use the Project Explorer View Menu to switch between

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 86 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

one set and another. To return to the original view, select the Deselect Working Sets options in the
View Menu.

Working sets are also useful to refine the scope of a search or build projects in a specific working
set.

6.1.12.2 Creating a working set

Create a working set to group related projects together.

Procedure

1. Click the View Menu hamburger icon in the Project Explorer view toolbar.
2. Select the Select Working Set... option.

3. In the Select Working Set dialog box, click New....

Figure 6-7: Creating a new working set

£ Select Working Set l |sl= iz-l

Select a working set:

() Window Working Sets
@ MNeo Working Sets
() Selected Working Sets

[T] 5 ARMWT Linux Applications New...
Edit...
Remove
Select All | | Deselect All |
':?:} I OK] [Cancel]

" J

4. Under Working set type, select Resource and click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 87 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-8: Selecting the resource type for the new working set

P
= MNew Working Set

= | B | |

Select a working set type

FESOUICE,

A general purpose working set that can contain any type of file-based Eclipse

S

LT

Working set type:

oo Breakpoint

1= Java

EIC,"C++

@n

Finish

L%

Cancel

In the Working set name field, enter a suitable name.

with this working set, or you can return to the wizard

In the Working set contents panel, you can select existing projects that you want to associate

later to add projects.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 88 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-9: Adding new resources to a working set

r Y
= MNew Working Set E@‘ﬂ_hj
Resource Working Set
—
Enter a working set name and select the working set resources, D

Working set name:
HelloWaorlds

Working set contents:

b [[] =5 application_rewind_1
b [[] 5 application_rewind_2
b [[] = distribution

b []E5 gnometris

b [@]F hello

s [5 HelloWorld

b]S kernel_module
&[] = RemoteSystemsTempFiles
. [[] =5 Streamline_annotate
b [5 threads

b [0 5 xaos

| SelectAll || DeselectAll |

@ Net» | [Enish][Cancel

7. Click Finish.
If required, repeat these steps to create more working sets.

9. In the Select Working Set dialog box, select the working sets that you want to display in the
Project Explorer view.

®©

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 89 of 222

Arm® Development Studio Getting Started Guide

Figure 6-10: Select the required working set

g N
& Select Working Set LIM
Select a working set:
() Window Working Sets
7 No Working Sets
@ Selected Working Sets
[C] & ARMVT Linux Applications Mew...
SelectAll | | DeselectAll |
'f?;' [OK] [Cancel
10. Click OK.
Results

Document ID: 101469_2022.2_00_en
Version 2022.2

Projects and examples in Arm Development Studio

The filtered list of projects are displayed in the Project Explorer view. Another feature of working
sets that can help with navigation is the option to change the top level element in the Project

Explorer view.

6.1.12.3 Changing the top-level element when displaying working sets

In the Project Explorer view, if you have more than one working set then you might want to
display the projects in a hierarchical tree with the working set names as the top level element. This

is not selected by default.

Procedure

1. In the Project Explorer view toolbar, click the View Menu hamburger icon.

2. Select Top Level Elements from the context menu.

3. Select either Projects or Working Sets.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 90 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

6.1.12.4 Deselecting a working set

You can change the display of projects in the Project Explorer view and return to the full listing of
all the projects in the workspace.

Procedure
1. Click on the View Menu icon in the Project Explorer view toolbar.
2. Select Deselect Working Set from the context menu.

6.2 Importing and exporting projects

Describes how to import resources from existing projects and how to export resources to use with
tools external to Arm® Development Studio.

6.2.1 Importing and exporting options
A resource must exist in a project in Arm® Development Studio before you can use it in a build.

If you want to use an existing resource from your file system in one of your projects, the
recommended method is to use the Import wizard. To do this, select Import... from the File menu.

If you want to use a resource externally, the recommended method is to use the Export wizard. To
do this, select Export... from the File menu.

There are several options available in the import and export wizards:

General
This option enables you to import and export the following:

e Files from an archive zip file.

Complete projects.

Selected source files and project sub-folders.

Preference settings.

C/C++
This option enables you to import the following:

o (C/C++ executable files.
o C/C++ project settings.

e Existing code as Makefile project.

You can also export C/C++ project settings and indexes.

Remote Systems
This option enables you to transfer files between the local host and the remote target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 91 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

Run/Debug
This option enables you to import and export the following:

e Breakpoint settings.
e Launch configurations.

Scatter File Editor

This option enables you to import the memory map from a BCD file and convert it into a
scatter file for use in an existing project.

For information on the other options not listed here, use the dynamic help.

6.2.2 Using the Import wizard

In addition to breakpoint and preference settings, you can use the Import wizard to import
complete projects, source files, and project sub-folders.

Select Import... from the File menu to display the Import wizard.

Importing complete projects

To import a complete project either from an archive zip file or an external folder from your file
system, you must use the Existing Projects into Workspace wizard. This ensures that the relevant
project files are also imported into your workspace.

Importing source files and project sub-folders

Individual source files and project sub-folders can be imported using either the Archive File or
File System wizard. Both options produce a dialog box similar to the following example. Using the
options provided you can select the required resources and specify the relevant options, filename,
and destination path.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 92 of 222

Arm® Development Studio Getting Started Guide

Figure 6-11: Typical example of the import wizard

Document ID: 101469_2022.2_00_en

Version 2022.2

Projects and examples in Arm Development Studio

-
& Import ==
Archive file (o

Source must not be empty. l ,;‘

From archive file:

Filter Types... Select All Deselect All

Into folder:

[] Overwrite existing resources without warning

Browse...

With the exception of the Existing Projects into Workspace wizard, files and folders are copied
into your workspace when you use the Import wizard. To create a link to an external file or project
sub-folder you must use the New File or New Folder wizard.

6.2.3 Using the Export wizard

You can use the Export wizard to export complete projects, source files and, project sub-folders in

addition to breakpoint and preference settings.

Select Export... from the File menu to display the Export wizard.

The procedure is the same for exporting a complete project, a source file, and a project sub-folder.
If you want to create a zip file you can use the Archive File wizard, or alternatively you can use
the File System wizard. Both options produce a dialog box similar to the example shown here.
Using the options provided you can select the required resources and specify the relevant options,

filename, and destination path.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 93 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-12: Typical example of the export wizard

[& Bpon By

Archive file

™
Y
b

Please enter a destination archive file.

b [HelloWorld| - El .cproject
[l = RemoteSystemsTempFiles project
| = Streamline_annotate =/ gee.dd

[

b [[]5 application_rewind_1 [€] hello_world.c
i [[]5 application_rewind_2
b [[] = distribution
[+
[
[+

*

m

[] 5 gnometris
[] 5 hello
[]5 kemel_module

— T .

| Filter Types... | | SelectAll || DeselectAl

To archive file: - Browse...

Options

@ Save in zip format 1@ Create directory structure for files
() Sawe in tar format () Create only selected directories
Compress the contents of the file

6.2.4 Import an existing Eclipse project

If you have an existing Eclipse project, you can import it into your workspace.

Procedure
1. Select File > Import... > Existing Project into Workspace. Click Next

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 94 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

w

Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-13: Selecting the import source type

- " . B
& Import MM
Select \A
Create new projects from an archive file or directory. I E 5 I

Select an import source:

type filter text

4 (= General
B Archive File
= Existing Projects into Workspace
(=} File System
[T Preferences
s [CIC++
> = CVS
s (= Install
> [= Remote Systerns
> (= Run/Debug
s (= Scatter File Editor
> [Target Configuration Editor
> (= Team

@ < Back Next > Finish

L A

Click Browse and navigate to the folder that contains the project that you want to import.
In the Projects panel, select the project that you want to import.

Select Copy projects into workspace if required, or deselect to create links to your existing
project(s) and associated files.

If you are not using working sets to group your projects then you can skip this step.
a) Select Add project to working sets.

b) Click Select....

c) Select an existing working set or create a new one and then select it.

d) Click OK.

Click Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 95 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-14: Selecting an existing Eclipse projects for import

r k'
& Import EIM
Import Projects 2
Select a directory to search for existing Eclipse projects. 4
() Select root directory: Browse...
@ Select archive file: | - Browse...
Projects:
Select All
Deselect All
Options
Search for nested projects
Copy projects into workspace
[] Hide projects that already exist in the workspace
Working sets
[7] Add project to working sets
Warking sets: Select
L%

If your existing project contains project settings from an older version of the
build system, you are given the option to update your project. Using the latest
version means that you can access all the latest toolchain features.

Results

The imported project is visible in the Project Explorer view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Projects and examples in Arm Development Studio

6.3 Examples provided with Arm Development Studio

Arm® Development Studio provides a selection of examples to help you get started:

Bare-metal software development examples for Armv7 that show:
o Compilation with Arm Compiler for Embedded 6.
o Compilation with GCC bare-metal compiler.

o Armv/ bare-metal debug.

The code is located in the <examples directory>\Bare-metal examples Armv7.zip archive file.
Bare-metal software development examples for Armv8 that show:

o Compilation with Arm Compiler for Embedded 6.

o Compilation with GCC bare-metal compiler.

o Armv8 bare-metal debug.

The code is located in the <examples directory>\Bare-metal examples Armv8.zip archive file.
Bare-metal software development examples for Armv9 that show:
o Compilation with Arm Compiler for Embedded 6.

o Armv9 bare-metal debug.

The code is located in the <examples directory>\Bare-metal examples Armv9.zip archive file.

The debug and compilation features that are available to you depends on
which version of Arm Development Studio you have installed. For detailed
information on which features are available in the different Arm Development
Studio editions, see: Arm Development editions

Bare-metal software development examples for Scalable Vector Extension (SVE) and SVE2 using
Arm Compiler for Embedded 6.

The code is located in the <examples directory>\SVE2 examples.zip archive file.

Arm Linux examples built with GCC Linux compiler that show build, debug, and performance
analysis of simple C/C++ console applications, shared libraries, and multi-threaded applications.
The files are located in the <examples directory>\Linux examples.zip archive file.

Examples for Keil® RTX version 5 RTX Real-Time Operating System (RTX-RTOS) are located in
the <examples directory>\RTX5 examples.zip archive file.

Software examples for Arm Debugger's Debug and Trace Services Layer (DTSL). The examples
are located in the <examples directory>\DTSL examples.zip archive file.

Jython examples for Arm Debugger. The examples are located in the <examples directory>
\Jython examples.zip archive file.

The CoreSight Access Library is available as a github project at https:/github.com/ARM-
software/CSAL. A recent snapshot of the library from github is located in the archive file,

<examples directory>\CoreSight Access Library.zip.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 97 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Projects and examples in Arm Development Studio

» Optional packages with source files, libraries, and pre-built images for running the examples can
be downloaded from the Arm Development Studio downloads page . You can also download
the Linux distribution project with header files and libraries for the purpose of rebuilding the
Arm Linux examples from the Arm Development Studio downloads page.

You can extract these examples to a working directory and build them from the command-line,
or you can import them into Arm Development Studio IDE using the import wizard. All examples
provided with Arm Development Studio contain a pre-configured IDE launch script that enables
you to easily load and debug example code on a target.

Each example provides instructions on how to build, run, and debug the example code. You can
access the instructions from the main index, <examples directory>\docs\index.html.

Related information
Import the example projects on page 98

6.4 Import the example projects

To use the example projects provided with Arm® Development Studio, you must first import them.

Procedure
1. Launch Arm Development Studio IDE.

2. Arm recommends that you create another workspace for example projects, so that they remain
separate from your own projects. To do this, select File > Switch Workspace > Other > Browse
> Make new folder, and enter a suitable name.

Result: Arm Development Studio IDE relaunches.

3. In the main menu, select File > Import....

4. Expand the Arm Development Studio group, select Examples and Programming Libraries and
click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 98 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Projects and examples in Arm Development Studio

Figure 6-15: Import dialog box

n Import

Select g
Imports the Arm Development Studio examples to the current workspace H

Select an import wizard:

type filter text |

» [= General ~
v [= Arm Development Studio
" Examples & Programming Libraries
K2 uvision Project
= CfC++
= Git
= Install
» [= Remote Systems
» [Run/Debug hd

W

W

@ < Back | Next > Finish Cancel

5. Select the examples and programming libraries you want to import. If a description for the
selected example exists, you can view it in the Description pane.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 99 of 222

Arm” Development Studio Getting Started Guide

Figure 6-16: Select items to import

n Import Examples and Programming Libraries

Select Development Studio examples & programming libraries to import in to
the current workspace

Import Development Studio Examples and Programming Libraries @f >

Document ID: 101469_2022.2_00_en
Version 2022.2

Projects and examples in Arm Development Studio

~

v [m] Armv8 Bare-Metal
] Armv8-M_security
[] calendar_Armv8-A_AC6
[] calendar_Armv8-A_GCC
[] Cortex-M55
[] fireworks_Armv8-A-FVP_AC6
[] fireworks_Armv8-A-FVP_GCC
fireworks_Armv8-Ax1-FVP_AC6
[] fireworks_Armv8-Ax1-FVP_GCC

Description

core bare-metal applications with Arm Compiler 6 and the Debugger.

Working sets
[] Add project to working sets New...

Working sets: Selects:

Fireworks example to demanstrate support for building and debugging Armv8-A single-

® MNext = Finish | ‘ Cancel

6. Click Finish.

Results

You can browse the imported examples in the Project Explorer.

Each example contains a readme . html Which explains how you can work with the example.

Related information
About working sets on page 86

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 100 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Writing code

7. Writing code

Describes how to use the editors when developing a project for an Arm target.

7.1 Editing source code

You can use the editors provided with Arm® Development Studio to edit your source code or you
can use an external editor. If you work with an external editor you must refresh Development
Studio to synchronize the views with the latest updates.

To do this, in the Project Explorer view, select the updated project, sub-folder, or file and click

File > Refresh. Alternatively, enable automatic refresh options under General > Workspace in the
Preferences dialog box. Configure your automatic refresh settings by selecting either Refresh using
native hooks or polling or Refresh on access options.

When you open a file in Development Studio, a new editor tab appears with the name of the file.
An edited file displays an asterisk (*) in the tab name to show that it has unsaved changes.

To view two or more editor tabs side-by-side, click on one of the tabs and drag it over an editor
border.

In the left-hand margin of the editor tab you can find a vertical bar that displays markers relating to
the active file.

Navigating

There are several ways to navigate to a specific resource in Development Studio. You can use
the Project Explorer view to open a resource by browsing through the resource tree and double-
clicking on a file. An alternative is to use the keyboard shortcuts or use the options from the
Navigate menu.

Searching

To locate information or specific code contained in one or more files in Development Studio, you
can use the options from the Search menu. Textual searching with pattern matching and filters to
refine the search fields are provided in a customizable Search dialog box. You can also open this
dialog box from the main workbench toolbar.

Content assist

The C/C++ editor, Arm assembler editor, and the Arm Debugger Commands view provide content
assistance at the cursor position to auto-complete the selected item. Using the Ctrl+Space
keyboard shortcut produces a small dialog box with a list of valid options to choose from. You can
filter the list by partially typing a few characters before using the keyboard shortcut. From the list
you can use the Arrow Keys to select the required item and then press the Enter key to insert it.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 101 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Writing code

Bookmarks

You can use bookmarks to mark a specific position in a file or mark an entire file so that you can
return to it quickly. To create a bookmark, select a file or line of code that you want to mark and
select Add Bookmark from the Edit menu. The Bookmarks view displays all the user defined
bookmarks. To access the bookmarks, select Window > Show View > Bookmarks from the main
menu. If the Bookmarks view is not listed then select Others... for an extended list.

To delete a bookmark, open the Bookmarks view, click on the bookmark that you want to delete,
and select Delete from the Edit menu.

7.2 About the C/C++ editor

The standard C/C++ editor is provided by the CDT plug-in that provides C and C++ extensions to
Eclipse. It provides syntax highlighting, formatting of code and content assistance when editing C/C
++ code.

Embedded assembler in C/C++ files is supported by Arm® Compiler for Embedded but this editor
does not support it and so an error is displayed. This type of code is Arm-specific and accepted
Eclipse behavior so you can ignore the syntax error.

If this is not the default editor, right-click on a source file in the Project Explorer view and select
Open With > C/C++ Editor from the context menu.

See the C/C++ Development User Guide for more information. Select Help > Help Contents from
the main menu.

7.3 About the Arm assembler editor

The Arm assembler editor provides syntax highlighting, formatting of code and content assistance
for labels in Arm assembly language source files. You can change the default settings in the dialog
box.

If this is not the default editor, right-click on your source file in the Project Explorer view and select
Open With > Arm Assembler Editor from the context menu.

The following shortcuts are also available for use:

Table 7-1: Arm assembler editor shortcuts

! Description

Content assist Content assist provides auto-completion on labels existing in the
active file. When entering a label for a branch instruction, Partially
type the label and then use the keyboard shortcut Ctrl+Space to
display a list of valid auto-complete options. Use the Arrow Keys
to select the required label and press Enter to complete the term.
Continue typing to ignore the auto-complete list.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 102 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Writing code

Shortcut ! Description

Editor focus The following options change the editor focus:

e« Qutline View provides a list of all areas and labels in the active
file. Click on an area or label to move the focus of the editor to
the position of the selected item.

e Select a label from a branch instruction and press F3 to move
the focus of the editor to the position of the selected label.

Formatter activation Press Ctrl+Shift+F to activate the formatter settings.

Block comments Block comments are enabled or disabled by using Ctrl+Semicolon.
Select a block of code and apply the keyboard shortcut to change
the commenting state.

7.4 About the ELF content editor

The ELF content editor creates forms for the selected ELF file. You can use this editor to view the
contents of image files and object files. The editor is read-only and cannot be used to modify the
contents of any files.

If this is not the default editor, right-click on your source file in the Project Explorer view and select
Open With > ELF Content Editor from the context menu.

The ELF content editor displays one or more of the following tabs depending on the selected file
type:
Header

Form view showing the header information.

Sections
Tabular view showing the breakdown of all section information.

Segments
Tabular view showing the breakdown of all segment information.

Symbol Table
Tabular view showing the breakdown of all symbols.

Disassembly
Textual view of the disassembly with syntax highlighting.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 103 of 222

Arm® Development Studio Getting Started Guide

7.5 ELF content editor - Header tab

The Header tab provides a form view of the ELF header information.

Figure 7-1: Header tab

B gnomatris °.0 -

Header
Machine class ELFCLASS3Z (32-hit)
Data encoding ELFDATAZLIE (Litkle endian)
Header version EV_CURREMT {Current version)
Operating System ABI glal =]
ABI version]
File type ET_E®ET (Executable file) ()
Machine EM_ARM (fdvanced RISC Machines ARM)
Inmage entry point 000000485
Flags EF_ARM_HASEMTRY
Header Size 52 bykes (0x34)
Segment header entry size 32 bykes (Oxz0)
Section header entry size 40 bytes (Ox28)
Program header entries g
Section header entries 39
Program header offset 52
Section header offset 1958956
Section header string table index 36

Header | Sections | Symbol Table | Disassembly |

7.6 ELF content editor - Sections tab

Document ID: 101469_2022.2_00_en
Version 2022.2
Writing code

g

The Sections tab provides a tabular view of the ELF section information.

To sort the columns, click on the column headers.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights res
Non-Confidential

erved.

Page 104 of 222

Arm® Development Studio Getting Started Guide

Figure 7-2: Sections tab

iﬂ\" gnometris 25 i

Sections
Mumber Mame
1 Jnkerp
2 note, ABI-kag
3 .hash
4 dynsym
5 .dynstr
& g, YErsion
7 N, Yersion_r
g reldyn
9 .rel.ple
10 it
11 .ple
1z et
13 Jfini
14 .rodata
15 ARM. exkab
16 ARM, exids
17 Jnit_array
15 fimi_array
19 Jjer
20 .dynarnic
21 Jgat
22 .data
23 bss
24 JARM. attributes
25 .comment
26 .debug_aranges
27 .debug_pubnames
28 .debug_info
29 .debug_abbrew
30 .debug_line
31 .debug_frame
32 debug_str
33 .debug_loc
34 .debug_pubtypes
35 .debug_ranges
36 .shstrtab
37 symtab
38 .strkab

Header | Sections Symbol Table T Disassembly

ELF Offset

0x00000134
0x00000148
0x00000165
0x0000085C
0x000017EC
0x00002C24
0x0000ZE1D
O0x0000ZEAD
Ox0000ZEES
0x000035D8
0x000035E4
0x000040A8
0x0000A554
0x0000AEE0
0x0000EB4DC
0x0000BASO
0x0000C000
0x0000C004
0x0000C00s
0x0000C00C
0x0000C164
0x0000CE04
0x0000CDF4
0x0000CDF4
0x0000CELD
0x0000CE47
O0x0000CFE7
0x0000DD3 4
Ox0O001ECEZE
0x0002054E
Ox000237FC
0x000Z48ES
0x000294F 6
0x0002D7D6
0x000304597
0x000307AF
0x00030F 44
Ox0D00334F4

Address

Ox00005154
O0x00008148
Ox00008168
Ox0000885C
Ox000097EC
Ox0000ACE4
Ox0000LELD
OxO0000LEAD
OxO000LEES
Ox0000BSDE
Ox0000BSE4
Ox0000COAS
Ox00012554
0x00012560
0x000134DC
Ox00013A50
Ox0001C000
0x0001C004
Ox0001C00s
Ox0001C00C
Ox0001C164
0x0001CE04
Ox0001CDFS
Ox00000000
Ox00000000
0x00000000
Ox00000000
Ox00000000
Ox00000000
0x00000000
Ox00000000
Ox00000000
Ox00000000
0x00000000
Ox00000000
Ox00000000
Ox00000000
0x00000000

7.7 ELF content editor - Segments tab

The Segments tab provides a tabular view of the ELF segment information.

To sort the columns, click on the column headers.

Document ID: 101469_2022.2_00_en
Version 2022.2
Writing code

Size (Bytes)

0x00000013
OxO00000z0
Ox000006F 4
Ox00000F&0
Ox00001468
Ox000001EC
Ox000000%0
Ox00000018
Ox00000720
Ox0000000C
Ox00000LC4
Ox000064AC
Ox00000008
O0x00000F 72
Ox000005A4
Ox000003FS
Ox00000004
Ox00000004
Ox00000004
Ox00000158
O0x000003 A0
Ox0000038F0
Ox00000060
Ox00000029
Ox0000008 &
Oxo00001z0
Ox00000DCD
Ox00010EF A
O0x0000191D
O0x000032E0
Ox000010EC
Ox00004C0E
Ox000042E0
Ox0000z2CCl
Ox00000318
Ox00000174
Ox0000ZEEQ
O0x00002Z A3 A

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 105 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Writing code
N
Figure 7-3: Segments tab

=
Segments [#]
Mumber Type Virtual Address Memory Size (Bytes) File Size (Bytes) Flags
@ PF_ARM EXIDX BxB808153A58 1816 1778 PF_R
1 PT_PHDR BxBEBBEe54 256 4088 PF_X+PF_R
2 PT_INTERP BxBeBBs134 19 23 o
¥ PT_LOAD BxBeReEeee 48768 137178 PF X+PF_R
4 PT_LOAD Bxbee1CoRE 3672 6764 PF_W+PF_R
5 PT_DYNAMIC @xbaelCeac 344 538 PF_W+PF_R
) PT_NOTE BxibBBEE14E 32 4 PF_R
7 BxBAT4ESST BxBEBRAEEE =} @ PF_W+PF_R

Header |Secﬁons|5&gments Symbol Table Disassembly|

7.8 ELF content editor - Symbol Table tab

The Symbol Table tab provides a tabular view of the symbols.

To sort the columns, click on the column headers.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 106 of 222

Arm® Development Studio Getting Started Guide

Figure 7-4: Symbol Table tab

iﬂ\" gnometris 25 i

Symbol Table
MNurnber Address
o 000000000
1 000005134
2 000005145
=) 000003165
4 000008352
5 0x000097BC
& 00000424
7 0x00004E10
g Ox0000AEAD
9 0x00004EES
10 000008508
11 0x0000BSE4
1z O=0000C0AS
13 000012554
14 000012560
15 00001340
16 0x00013480
17 0x0001C000
15 0x0001C004
19 000012003
20 00001 CO0C
21 0=0001C164
22 0x0001C504
23 00001 DFS
24 000000000
25 000000000
26 000000000
27 000000000
28 000000000
29 000000000
30 0x00000000
31 000000000
32 000000000
33 000000000
34 0x00000000
35 000000000
36 Ox0000C0E4
37 0x0000C0E4
38 0x0000C100
39 000008503
000012554

40

Mame Einding
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
STE_LOCAL
$a STE_LOCAL
call_gmon_start STE_LOCAL
$d STE_LOCAL
$a STE_LOCAL
$a STE_LOCAL

Header |Sections | Symbol Table | Disassembly

Type
STT_MO...

STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...
STT_SEC...

STT_NO...
STT_FUNC
STT_NO...,
STT_NO...
STT_NO...

Section

visibility

STW_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STY_DEFALLT
STW_DEFALLT
STY_DEFALLT
STY_DEFALLT
STY_DEFALLT

7.9 ELF content editor - Disassembly tab

The Disassembly tab displays the output with syntax highlighting. The color schemes and syntax

preferences use the same settings as the Arm assembler editor.

Document ID: 101469_2022.2_00_en

Size
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

Version 2022.2
Writing code

There are several keyboard combinations that you can use to navigate around the output:

Use Ctrl+F to open the Find dialog box to search the output.

Use Ctrl+Home to move the focus to the beginning of the output.

Use Ctrl+End to move the focus to the end of the output.

Use Page Up and Page Down to navigate through the output one page at a time.

You can also right-click in the Disassembly view and select the Copy and Find options in the
context menu.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Writing code
. .
Figure 7-5: Disassembly tab
[gnometris 5 Siim!
Disassembly e
|** Section #10 .init ** [
|_init
[Dx0000BS5DE : PUSH (23,18}
Ox0000BSDC: BL call gwon start ; OxCOE4
Dx0000BSEQ: POP {23, poh
|** Section #11 .plc *x
Dx0000BSE4 : PUSH {1ey
Dx0000BSES : LDR 1r, [po,#4] : [OxBSF4] = 0Ox0
Dx0000BSEC: ADD 1z, pe, 1
Dx0000BSFO: LDR pe, [1r,#8] !
Dx0D000BSF4 : DCD 0x00010E70
Dx0000BSFS: ADD r12,pe, #0, 12 : #O
Dx0000BSFC: ADD r12,r12,#0x10, 20 : #0x10000
Dx0000BS00: LDR pe, [£12, #0xb70] !
Dx0000B504: ADD ri2,pe, #0, 12 ; #0
Dx0000B508 ADD r12,r12,#0x10, 20 ; #0x10000
Dx0000BS0C: LDR pc, [riz, #0xhea] |
Dx0000B510: ADD r12,pe,#0, 12 : #0
Dx0000B614: ADD r12,r12,#0x10, 20 ; #0x10000
Dx0000BS15: LDR pc, [r1z, #0xhE0] !
Dx0000ES1C: ADD riz, pe,#0, 12 ; #0O
Dx0000BE20: ADD r12,r12,#0x10, 20 ; #0x10000
Dx0D000BE24: LDR pe, [£12, #0xh58] |
Dx0000B525: ADD £12, po, #0, 12 : #0
Dx0000BS2C: ADD r12,r12,#0x10, 20 ; #0x10000
Dx0000B530: LDR pc, [r12, #0xh50] !
Dx0000B634: ADD r12,pe, #0, 12 : #0O
Dx0000B638: ADD r12,r12,#0x10, 20 ; #0x10000
Dx0000BS3C: LDR po, [r1z, #0xh4aa] !
Dx0000B540: ADD ri2,pe,#0, 12 ; #0O
Dx0000B G544 : DD r12, riz,#0x10, 20 ; #0x10000
Dx0000B545 LDR po, [r12, #0xh40] ! -

Header |Sections -ﬁyrﬁbol Table .Disassembly

7.10 About the scatter file editor

The scatter file editor enables you to easily create and edit scatter files for use with the Arm linker
to construct the memory map of an image.

It provides a text editor, a hierarchical tree, and a graphical view of the regions and output sections
of an image. You can change the default syntax formatting and color schemes in the Preferences
dialog box.

If the scatter file editor is not the default editor, right-click on your source file in the Project
Explorer view and select Open With > Scatter File Editor from the context menu.

The scatter file editor displays the following tabs:

Source
Textual view of the source code with syntax highlighting and formatting.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 108 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Writing code

Memory Map

A graphical view showing load and execute memory maps. Although these maps are not
editable, you can select a load region to show the related memory blocks in the execution
regions.

The scatter file editor also provides a hierarchical tree with associated toolbar and context menus
using the Outline view. Clicking on a region or section in the Outline view moves the focus of the
editor to the relevant position in your code. If this view is not visible, select Show View > Outline
from the Window menu.

The linker documentation for Arm® Compiler for Embedded describes in more detail
how to use scatter files.

Before you can use a scatter file you must add the --scatter=file option to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

7.11 Creating a scatter file

Create a scatter file to specify more complex memory maps that cannot be specified using compiler
command-line memory map options.

Before you begin

Before you can use a scatter file, you must add the --scatter=file option to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

Procedure
1. Open an existing project, or create a new project.
2. Inyour project, add a new empty text file with the extension .scat. For example scatter.scat.

3. In the Outline view, click the Add load region toolbar icon, or right-click and select Add load
region from the context menu.

4. Enter aload region name, for example, LR1.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 109 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Writing code

Figure 7-6: Add load region dialog box

& Add Load Region *
Mame:
| LR1

5. Click OK.

6. Modify the load region as shown in the following example.

LR1 0x0000 0x8000

{
LR1 erl 0x0000 0x8000
{

}
LR1 er2 0x10000 0x6000
{

}

* (+RO)

* (+RW, +21)

}

7. Select the Regions/Sections tab to view a graphical representation.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Writing code

Figure 7-7: Graphical view of a simple scatter file

[£) mysource.c 5] scatter.scat 22 - o

0xFFFFFFFF : : 0OxFFFFFFFF |
LR1 LR1 er2
(R, +ZT0
000010000
LR1 erl
*HHRO)
0=00000000 00000000
Load Regions Execution Regions

Regions/Sections | scather.scat

8. Save your changes.

7.12 Importing a memory map from a BCD file
If you have a BCD file that defines a memory map, you can import this into the Scatter File Editor.

Before you begin

Before you can use a scatter file, you must add the --scatter=file oOption to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 111 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Writing code

Procedure
1. Select File > Import > Scatter File Editor > Memory from a BCD File.
2. Enter the location of the BCD file, or click Browse... to select the folder.
3. Select the file that contains the memory map that you want to import.
4. If you want to add specific memory regions to an existing scatter file, select Add to current
scatter file.
The scatter file must be open and active in the editor view before you can use
this option.
5. If you want the wizard to create a new file with the same name as the BCD file but with a
.scat file extension, select Create new scatter file template.
6. Select the destination project folder.
7. By default, all the memory regions are selected. Edit the selections and table content as

required.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 112 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Writing code

Figure 7-8: Memory block selection for the scatter file editor

Select Memory Blocks *ﬁ

Select memory blocks from the table to create a scatter file template. You e

can change memory names, start addresses and sizes to suit your regions. -

Memory Mame Start Address Size Type

@ M SCM_INTERFACE 0x48002000 0x00000024 N/A

& M SCM PAD 0x48002030 Ox 00000234 N/A

B M SCM GENERAL 0x48002270 Ox000002FF N/A

B M 5CM MEM WKUP 0x48002600 0x 00000400 N/A

& M SCM PAD WKUP 0x48002A00 0x 00000050 N/A

B M S5CM GENERAL WEKUI 0x48002A60 Ox0000001F N/A

B : M DISPALY 5SS 0x 48050000 0x 00000400 NfA

B M DISPLAY CONTROLLI 0x48050400 0x 00000400 N/A

B | M_RFBI 0x 48050800 0x00000400 N/A

& M VIDEQ EN 0x48050C00 0x 00000400 N/A

& M DSl PROTOCOL 0x4804FCO0 Ox 00000200 N/A

B M DSl COMPLEX 0x4804FEOQOD 0x 00000040 N/A

& {M DSl PLL 0x4804FF00 0x 00000020 N/A _

Select All | Deselect All |
@ L ;L_J_J Next > Cancel || Finish
8. Click Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 113 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

8. Debugging code

Describes how to configure and connect to a debug target using Arm® Debugger.

8.1 Overview: Debug connections in Arm Debugger

You can set up connections to debug bare-metal targets, Linux kernel, and Linux applications. You
can also use the Snapshot View feature to view previously captured application states.

Bare-metal debug connections

Bare-metal targets run without an underlying operating system. To debug bare-metal targets using
Arm® Debugger:

o |f debugging on hardware, use a debug hardware adapter that is connected to the host
workstation and the debug target.

o If debugging on a model, use a CADI-compliant connection between the debugger and a
model.

Linux kernel debug connections

Arm Debugger supports source-level debugging of a Linux kernel or a Linux kernel model. For
example, you can set breakpoints in the kernel code, step through the source, inspect the call stack,
and watch variables. The connection method is similar to bare-metal debug connections.

Linux application debug connections

For Linux application debugging in Arm Debugger, you can connect to your target with a TCP/IP
connection.

Before you attempt to connect to your target, ensure that:

e gdbserver is present on the target. If gdbserver is not installed on the target, either see the
documentation for your Linux distribution or check with your provider.

o For AArché4 (Arm®v8-A, Armv8-R AArché4, or Armv9-A) targets, you need to use the
AArché4 gdbserver.

e ssh daemon (sshd) must be running on the target to use the Remote System Explorer (RSE) in
Development Studio.

e sftp-server Must be present on the target to use RSE for file transfers.

Snapshot Viewer

Use the Snapshot Viewer to analyze and debug a read-only representation of the application state
of your processor using previously captured data. This is useful in scenarios where interactive
debugging with a target is not possible. For more information, see Working with the Snapshot
Viewer.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 114 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

Related information

Configuring a connection to a bare-metal hardware target on page 119

Configuring a connection to a Linux application using gdbserver on page 122

Configuring a connection to a Linux kernel on page 125

Configuring a connection to an external FVP for bare-metal application debug on page 116
Working with the Snapshot Viewer

About the Snapshot Viewer

8.2 Using FVPs with Arm Development Studio

A Fixed Virtual Platform (FVP) is a software model of a development platform, including processors
and peripherals. FVPs are provided as executables, and some are included in Development Studio.
Depending on your requirements, you can:

e Create a new model configuration

o Configure a connection to an FVP for bare-metal application debug

e From the command-line, configure a connection to an FVP for bare-metal application debug

e Configure a connection to an FVP for Linux application debug

e Configure a connection to an FVP for Linux kernel debug

8.3 Configuring a connection from the command-line to a
built-in FVP

You can configure a connection to a Fixed Virtual Platform (FVP) using the command-line only
mode available in Arm® Development Studio.

Before you begin

e The FVP model that you connect to must be available in the Development Studio configuration
database so that you can select it. If the FVP model is not available, you must first import it and
create a new model configuration. See Create a new model configuration for information.

e Toload and execute the application on your FVP model using Development Studio, your
application must first be built with the appropriate compiler and linker options so that it can run
on your model. To locate the options and parameters required to build your application, see the
documentation for your compiler and linker.

e You must have the appropriate licenses installed to run your FVP model from the command
line.

e |f you use the command-line only mode, you can automate debug and trace activities. By
automating a debug session, you can save significant time and avoid repetitive tasks such as
stepping through code at source level.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 115 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

Procedure
1. Open the Arm Development Studio command prompt:

¢ On Windows, select Start > All Programs > Arm Development Studio > Arm Development
Studio Command Prompt.

e On Linux, add the <install directory/bin> location to your PATH environment variable
and then open a UNIX bash shell.

2. To connect to the Arm FVP Cortex®-A9x4 FVP model and specify an image to load from your
workspace, at the command prompt, enter:

¢ On Windows: debugger --cdb-entry "Arm FVP::VE Cortex A9x4::Bare Metal
Debug: :Bare Metal Debug::Debug Cortex—-A9x4 SMP" --image "C:\Users\<user>
\developmentstudio-workspace\HelloWorld\Debug\HelloWorld.axf"

e On Linux: debugger --cdb-entry "Arm FVP::VE Cortex A9x4::Bare Metal Debug::Bare
Metal Debug::Debug Cortex-A9x4 SMP" --image "/home/<user>/developmentstudio-
workspace/HelloWorld/Debug/HelloWorld.axf"

Results

Development Studio starts the Arm FVP Cortex-A9x4 FVP and loads the image. When you are
connected to your target, use any of the Arm Debugger commands to access the target and start
debugging.

For example, info registers displays all application level registers.

See Running Arm Debugger from the operating system command-line or from a script for more
information about how to use Arm Debugger from the operating system command-line or from a
script.

8.4 Configuring a connection to an external FVP for bare-
metal application debug

You can use Arm® Development Studio to connect to an external Fixed Virtual Platform (FVP)
model for bare-metal debugging.

Before you begin

e The FVP model that you are connecting to must be available in the Development Studio
configuration database so that you can select it in the Model Connection dialog box. If the
FVP model is not available, you must first import it and create a new model configuration. See
Create a new model configuration for information.

o To load and execute the application on your FVP model using Development Studio, your
application must first be built with the appropriate compiler and linker options so that it can run
on your model. To locate the options and parameters required to build your application, check
the documentation for your compiler and linker.

e You must have the appropriate licenses installed to run your FVP model from the command
line.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 116 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Debugging code

About this task
This task explains how to:

o Create a model connection to connect to the Base aEmMvea aemvsa FVP model and load your
application on the model.

e Start up the Base aEMvsa aEmvea FVP model separately with the appropriate settings.

e Start a debug session in Development Studio to connect and attach to the running
Base AEMv8A AEMv8A FVP model.

o Configuring a connection to a built-in FVP model follows a similar sequence of
steps. Development Studio launches built-in FVPs automatically when you start
up a debug connection.

e FVPs available with your edition of Development Studio are listed under the
Arm FVP (Installed with Arm DS) tree. To see which FVPs are available with
your license, compare Arm Development Studio editions.

Procedure
1. From the Arm Development Studio main menu, select File > New > Model Connection.

2. In the Model Connection dialog box, specify the details of the connection:
a) Give the connection a name in Debug connection name, for example:
my_external_fvp_connection.
b) If you want to associate the connection to an existing project, select Associate debug
connection with an existing project and click Next.
c) In Target Selection browse and select Base aEmMv8a arMvsa and click Finish to complete the
initial configuration of the connection.

3. Inthe displayed Edit Configuration dialog box, use the Connection tab to select the target and
connection settings:
a) Inthe Select target panel confirm the target selected.
b) If required, specify Model parameters under Connections.
c) If required, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL
Configuration dialog box to configure additional debug and trace settings for your target.

4. Use the Files tab to specify your application and additional resources to download to the

target:

a) In Target Configuration > Application on host to download, specify the application that
you want to load on the model.

b) If you want to debug your application at source level, select Load symbols.

c) If you want to load additional resources, for example, additional symbols or peripheral
description files from a directory, use the Files area to add them. Click + to add resources,
click - to remove resources.

5. Use the Debugger tab to configure debugger settings.
a) Inthe Run control area:

e Choose if you want to Connect only to the target or Debug from entry point. If you want
to start debugging from a specific symbol, select Debug from symbol.

» If you need to run target or debugger initialization scripts, select the relevant options and
specify the script paths.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 117 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

« |If you need to specify at debugger start up, select Execute debugger commands options
and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

¢) Inthe Paths area, use the Source search directory field to enter any directions on the host
to search for your application files.

d) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

6. If required, specify arguments to pass to the main () function. The methods of passing
arguments are described in About passing arguments to main().

7. f required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply and then Close to save the configuration settings and close the Debug
Configurations dialog box.
You have now created a debug configuration to connect to the Base aemvea aemvsa FVP target.
You can view this debug configuration in the Debug Control view.

9. The next step is to start up the Base aEmvea aemvsa FVP with the appropriate settings so that
Development Studio can connect to it when you start your debugging session.
a) Open a terminal window and navigate to the installation directory of the
Base AEMv8A AEMv8A FVP.
b) Start up the Base aEMvsA AEMv8A Separately with the appropriate options and parameters.
For example, to run the Fvp_Base AEMv8A-AEMv8A.exe FVP model on Windows platforms, at
the command prompt enter:

FVP Base AEMv8A-AEMv8A.exe -S -C cluster(0.NUM CORES=0xl -C bp.secure memory=false -
C cache state modelled=0

Where:

* FVP Base AEMvBA-AEMv8A.exe - |he executable for the FVP model on Windows platforms.

e -5 Or --cadi-server - Starts the CADI server so that Arm Debugger can connect to the
FVP maodel.

e -COr --parameter - Sets the parameter you want to use when running the FVP model.

e cluster0.NUM CORES=0x1 - Specifies the number of cores to activate on the cluster in this
instance.

* bp.secure memory=false - Sets the security state for memory access. In this example,
memory access is disabled.

e cache state modelled=0 - Sets the core cache state. In this example, it is disabled.

The parameters and options that are required depend on your specific
requirements. Check the documentation for your FVP to locate the appropriate
parameters.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 118 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

You can find the options and parameters that are used in this example in the
Fixed Virtual Platforms FVP Reference Guide. You can also enter --1ist-params
after the FVP executable name to print available platform parameters.

The FVP is now running in the background awaiting incoming CADI connection requests from
Arm Debugger.

10. In the Debug Control view, double-click the debug configuration that you created.
This action starts the debug connection, loads the application on the model, and loads the
debug information into the debugger.

11. Click Continue running application to continue running your application.

8.5 Configuring a connection to a bare-metal hardware
target

To configure a connection to a bare-metal hardware target, create a hardware debug connection.
Then, connect to your hardware target using JTAG or Serial Wire Debug (SWD) using DSTREAM-
ST or a similar debug hardware adapter.

Before you begin

o Ensure that your target is powered on. Refer to the documentation supplied with the target for
more information.

o Ensure that the debug hardware adapter connecting your target with your workstation is
powered on and working.

e If using DSTREAM-ST, ensure that your target is connected correctly to the DSTREAM-ST unit.
If the target is connected and powered on, the TARGET LED illuminates green.

e |f using DSTREAM, ensure that your target is connected correctly to the DSTREAM unit. If the
target is connected and powered on, the TARGET LED illuminates green, and the VTREF LED
on the DSTREAM probe illuminates.

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.

2. In the Hardware Connection dialog box, specify the details of the connection:
a) In Debug Connection enter a debug connection name, for example
my hardware connection and click Next.
b) In Target Selection select a target, for example Juno Arm Development Platform (r2) and
click Finish to complete the initial connection configuration.

3. Inthe displayed Edit Configuration dialog box, click the Connection tab to specify the target

and connection settings:

a) In the Select target panel confirm the target selected.

b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM
Family.

c) If required, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL
Configuration Configuration dialog box to configure additional debug and trace settings for
your target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 119 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

d) Inthe Connections area, enter the Connection name or IP address of your debug hardware
adapter. If your connection is local, click Browse and select the connection using the
Connection Browser.

Figure 8-1: Edit the Connection tab

Edit Configuration

Edit configuration and launch. ﬁ

Name: |my_hardware_connection
< Connection Files| # Debugger| %% OS Awareness | - Arguments | B Environment e Export

Select target

This debug configuration is associated with Arm Development Boards / Juno Arm Development Platform (r2). Select which debug operation to use.
Currently selected: Bare Metal Debug / Debug Cortex-A53_0

¥ Juno Arm Development Platform (r2)
¥ Bare Metal Debug
Debug Cortex-A53_0
Debug Cortex-A53_1
Debug Cortex-A53_2
Debug Cortex-A53 3
Debug Cortex-A53x4 SMP -

Target Connectiol | DSTREAM Family Click here For more details on this platform
Arm Debugger will connect to a DSTREAM to debug a bare metal application.

Connections

Bare Metal Debug | Connection | DSTREAM-ST_Connection Browse...
DTSL Options Edit... Configure DSTREAM trace or other target options. Using "default” configuration options
Revert Apply
"
@ | close | Debug |

4. Click the Files tab to specify your application and additional resources to download to the

target:

a) If you want to load your application on the target at connection time, in the Target
Configuration area, specify your application in the Application on host to download field.

b) If you want to debug your application at source level, select Load symbols.

c) If you want to load additional resources, for example, additional symbols or peripheral
description files from a directory, add them in the Files area. Click + to add resources, click -
to remove resources.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 120 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

Figure 8-2: Edit the Files tab

Edit configuration and launch. g
@ Afile has been specified to be downloaded to the target, which will require the core to be stopped, but "Connect Only" has
also been specified on the Debugger tab.

Name: |/my_hardware_connection
<= Connection (i) Files % Debugger| “& OS Awareness| ®¥- Arguments| B Environment | e Export

Target Configuration
Application on host to download:

S{workspace_loc:/my_hardware_connection/my_hardware_connection.axf}
File System... | |Workspace...| & Load symbols
Files

Load symbols from file -

File System... | | Workspace...

Revert Apply

Close

5. Use the Debugger tab to configure debugger settings.
a) Inthe Run control area:

* Specify if you want to Connect only to the target or Debug from entry point. If you want
to start debugging from a specific symbol, select Debug from symbol.

« If you need to run target or debugger initialization scripts, select the relevant options and
specify the script paths.

* If you need to specify at debugger start up, select Execute debugger commands options
and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify the new location.

c) Inthe Paths area, specify any directories on the host to search for files of your application
in the Source search directory field.

d) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 121 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

Figure 8-3: Edit the Files tab

Edit configuration and launch.
Create, edit or choose a configuration to launch an Arm Debugger session.

Name: |/my_hardware_connection
<= Connection [lia} Files | % Debugger % 0s Awareness | ®- Arguments: = Environmentlrz;'i Export

Run control

) Connectonly () Debug from entry point @ [Debug from symbol |main

["] Run targetinitialization debugger script (.ds / .py)
[7) Run debug initialization debugger script (.ds / .py)

["] Execute debugger commands

Host working directory
& Use default

Paths
Revert Apply
@ Close Debug

6. If required, specify arguments to pass to the main () function. The methods of passing
arguments are described in About passing arguments to main().

7. If required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target and start the debugging session.

8.6 Configuring a connection to a Linux application using
gdbserver

For Linux application debugging, you can configure Arm® Debugger to connect to a Linux
application using gdbserver.

Before you begin

e Set up your target with an Operating System (OS) installed and booted. Refer to the
documentation supplied with your target for more information.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 122 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Debugging code

Obtain the target IP address or name for the connection between the debugger and the debug
hardware adapter. If the target is in your local subnet, click Browse and select your target.

If required, set up a Remote Systems Explorer (RSE) connection to the target.

o If you are connecting to an already running gdbserver, then you must ensure
that it is installed and running on the target. To run gdbserver and the
application on the target use: gdbserver port path/myaApplication. Where
port is the connection port between gdbserver and the application and path/
myApplication is the application that you want to debug.

e If you are connecting to an AArch64 (Arm®v8-A, Armv8-R AArché4, or Armv9-
A) target, select the options under Connect via AArch64 gdbserver.

Procedure

1.

2.

3.

From the Arm Development Studio main menu, select File > New > Linux Application
Connection.

In the Linux Application Connection dialog box, specify the details of the connection:
a) Give the debug connection a name, for example my_linux_app_connection.

b) If using an existing project, select Use settings from an existing project option.

¢) Click Finish.

In the Edit Configuration dialog box displayed:

e If you want to connect to a target with the application and gdbserver already running on it:
a. Inthe Connection tab, select Connect to already running application.
b. In the Connections area, specify the address and port details of the target.

c. If you want to terminate the gdbserver when disconnecting from the FVP, select
Terminate gdbserver on disconnect.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 123 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Debugging code

Figure 8-4: Edit Linux app connection details

Edit configuration and launch. ﬁ\‘

Name: \my_linux_app_(onnection |

- Connection " @ Files| % Debugger| % OS Awareness| ®¥= Arguments| B Environment| ¢y Export|

Select target

This debug configuration is associated with Linux Application Debug / Application Debug. Select which debug operation to use.
Currently selected: Connections via gdbserver / Connect to already running application

¥ Linux Application Debug
v Application Debug
> Connections via AArch64 gdbserver
¥ Connections via gdbserver
Connect to already running application
Download and debug application
start gdbserver and debug target-resident application

Arm Debugger will connect to an already running gdbserver on the target system.

Connections

Address: 110.1.20.45

gdbserver (TCP) | port: (5000 |

[] Terminate gdbserver on disconnect

Revert Apply

@ | Close [Debug j

d. Inthe Files tab, use the Load symbols from file option in the Files panel to specify
symbol files.

e. Inthe Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

f. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

g. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

« If you want to download your application to the target system and then start a gdbserver
session to debug the application, select Download and debug application. This connection
requires that ssh and gdbserver is available on the target.

a. Inthe Connections area, specify the address and port details of the target you want to
connect to.

b. Inthe Files tab, specify the Target Configuration details:

> Under Application on host to download, select the application to download onto
the target from your host filesystem or workspace.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 124 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Debugging code

o Under Target download directory, specify the download directory location.
o Under Target working directory, specify the target working directory.

o If required, use the Load symbols from file option in the Files panel to specify
symbol files.

In the Debugger tab, specify the actions that you want the debugger to perform after it
connects to the target.

If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

If you want to connect to your target, start gdbserver, and then debug an application
already present on the target, select Start gdbserver and debug target resident application,
and configure the options.

a.

In the Model parameters area, the Enable virtual file system support option maps
directories on the host to a directory on the target. The Virtual File System (VFS)
enables the FVP to run an application and related shared library files from a directory on
the local host.

o The Enable virtual file system support option is selected by default. If you do not
want virtual file system support, deselect this option.

o If the Enable virtual file system support option is enabled, your current workspace
location is used as the default location. The target sees this location as a writable
mount point.

In the Files tab, specify the location of the Application on target and the Target
working directory. If you need to load symbols, use the Load symbols from file option
in the Files panel.

In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

4. Click Apply to save the configuration settings.
5. Click Debug to connect to the target and start debugging.

8.7 Configuring a connection to a Linux kernel

Use these steps to configure a connection to a Linux target and load the Linux kernel into memory.
The steps also describe how to add a pre-built loadable module to the target.

Before you begin
For a Linux kernel module debug, a Remote Systems Explorer (RSE) connection to the target might
be required. If so, you must know the target IP address or name.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 125 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Debugging code

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.

2. In the Hardware Connection dialog box, specify the details of the connection:
a) In Debug Connection give the debug connection a name, for example
my_linux_kernel_connection and click Next.
b) In Target Selection select a target, for example Juno Arm Development Platform (r2) and
click Finish to complete the initial configuration of the connection.

Figure 8-5: Name the Linux kernel connection

£ Hardware Connection

Debug Connection

Enter a connection name and optionally associate with an existing project

Debug connection name: |my linux_kernel connection]

[] Associate debug connection with an existing project

@ <Back || Next> | Cancel

3. In the Edit Configuration dialog box, use the Connection tab to specify the target and

connection settings:

a) Inthe Select target panel, browse and select Linux Kernel and/or Device Driver Debug
operation, and further select the processor core you require.

b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM
Family.

c) If you need to, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL
Configuration Editor to configure additional debug and trace settings for your target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 126 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

d) Inthe Connections area, enter the Connection name or IP address of your debug hardware
adapter. If your connection is local, click Browse and select the connection using the
Connection Browser.

4. Use the Files tab to specify your application and additional resources to download to the

target:

a) If you want to load your application on the target at connection time, in the Target
Configuration area, specify your application in the Application on host to download field.

b) If you want to debug your application at source level, select Load symbols.

c) If you want to load additional resources, for example, additional symbols or peripheral
description files from a directory, add them in the Files area. Click Add resource to add
resources, click Remove resources to remove resources.

5. Select the Run control area in the Debugger tab to configure debugger settings:
a) Select Connect only and set up initialization scripts as required.

Operating System (OS) support is automatically enabled when a Linux kernel
vmlinux symbol file is loaded into the debugger from the Arm Debugger
launch configuration. However, you can manually control this using the set os
command.

For example, if you want to delay the activation of operating system support
until the kernel has booted and the Memory Management Unit (MMU) is
initialized, then you can configure a connection that uses a target initialization
script to disable operating system support.

b) Select Execute debugger commands option.

c) Inthe field provided, enter commands to load debug symbols for the kernel and any kernel
modules that you want to debug, for example:

add-symbol-file <path>/vmlinux S:0

add-symbol-file <path>/modex.ko

e The path to the vmlinux must be the same as your build environment.

e Inthe example above, the kernel image is called vm1inux, but this could be
named differently depending on your kernel image.

e Inthe example above, s:0 loads the symbols for secure space with o offset.
The offset and memory space prefix is dependent on your target. When
working with multiple memory spaces, ensure that you load the symbols for
each memory space.

d) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

e) Inthe Paths area, specify any directories on the host to search for files of your application
using the Source search directory field.

f) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

6. If required, specify arguments to pass to the main () function. The methods of passing
arguments are described in About passing arguments to main().

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 127 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

7. lf required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target and start the debugging session.

By default, for this type of connection, all processor exceptions are handled by
Linux on the target. Once connected, you can use the Manage Signals dialog
box in the Breakpoints view menu to modify the default handler settings.

8.8 Configuring trace for bare-metal or Linux kernel
targets

You can configure trace for bare-metal or Linux kernel targets using the DTSL options that Arm®
Debugger provides.

About this task
After configuring trace for your target, you can connect to your target and capture trace data.

Procedure

1. In Arm Debugger, select Window > Perspective > Open Perspective > Other > Development
Studio .

2. Select Run > Debug Configurations to open the Debug Configurations launcher panel.

3. Select the Arm Debugger debug configuration for your target in the left-hand pane.
If you want to create a new debug configuration for your target, then select Arm Debugger
from the left-hand pane, and then click the New button. Then select your bare-metal or Linux
kernel target from the Connection tab.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 128 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Debugging code

Figure 8-6: Select the debug configuration

Create, and run figurations ﬁ'

OCEax B3~ Name: |my_hardware_connection ‘

[c;a| <= Connection - [Files| % Debugger| & OS Awareness| ®: Arguments | B8 Environment| ey Export|

v % CMSIS C/C++ Application = Select target
 New_configuration This debug configuration is associated with Arm Development Boards / Juno Arm Development Platform (r2). Sele

N N Currently selected: Bare Metal Debug / Debug Cortex-A53_0
¥ @ Generic Arm C/C++ Applicatiq Y 9/ g -

% gnometris-FVP
gnometris-gdbserver
¥ Hardware_linux_app

% Hello Debug Cortex-A53_0

% hello-Fvp Debug Cortex-A53_1

hello-gdbserver Debug Cortex-A53_2

Helloworld Debug Cortex-A53_3

% Linux application debug Debug Cortex-A53x4 SMP
% Linux_app_model
4 Model_connection Target Connectiol | DSTREAM Family 2 | Click here f
4 ModelConnection

% my_external_fvp_connecti
%+ my_hardware_connection
% my_linux_app_connection

¥ Arm
¥ Juno Arm Development Platform (r2)
¥ Bare Metal Debug

Arm Debugger will connect to a DSTREAM to debug a bare metal application.

Connections

. Bare Metal Debug | Connection | TestFarm-Juno-A57x2-A53x4 \ | Browse... |
my_linux_app_fvp_connect
% my_model_connection DTSL Options |Edit..| Configure DSTREAM trace or other target options. Using "default” configuration op
STM_Juno -
71 Java Application
& Jython run <
T »
ae e s o Revert Appl
Filter matched 23 of 36 items | J | PPY.

4. After selecting your target in the Connection tab, click the DTSL Options Edit button. This
shows the DTSL Configuration dialog box where you can configure trace.

5. Depending on your target platform, the DTSL Configuration dialog box provides different
options to configure trace.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 129 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Debugging code

Figure 8-7: Select Trace capture method

Debug and Trace Services Layer (DTSL) Configuration for DSTREAM
Add, edit or choose a DTSL configuration For File : dtsl_config_script.py, class : DtslScript

w B By 3 Mame of configuration:
default -
Trace Buffer . Cortex-A72| Cortex-A53| Cortex-M3| ETR/ETF|STM| 32
Trace capture method | DSTREAM 4GB Trace Buffer =
Apply Revert
l'/;)\'l

\£/ Cancel | OK |

a) For Trace capture method select the trace buffer you want to use to capture trace.

b) The DTSL Configuration dialog box shows the processors on the target that are capable of
trace. Click the processor tab you require. Then, select the option to enable trace for the
individual processors you want to capture trace.

c) Select any other trace related options you require in the DTSL Configuration dialog box.

d) Click Apply and then click OK. This configures the debug configuration for trace capture.

6. Use the other tabs in the DTSL Configuration dialog box to configure the other aspects of your
debug connection.

7. Click Apply to save your debug configuration. When you use this debug configuration to
connect, run, and stop your target, you can see the trace data in the Trace view.

The options to enable trace might be nested. In this example, you must select
Enable Cortex-A15 core trace to enable the other options. Then you must
select Enable Cortex-A15 0 trace to enable trace on core O of the Cortex®-A15
processor cluster.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 130 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

Figure 8-8: Select the processors you want to trace

Mame of configuration: | default

Trace Buffer | C ortex-Alg"nm_%C ortex-}\:';] HMH] Cache RAMs
Enable Cortex-A15 core trace

Enable Cortex-2150 trace
Enable Cortex-2151 trace
[T PTM Triggers halt execution
Enable PTM Timestamps
Enable PTM Context IDs

Context ID Size 32 bit A

[] Cycle Accurate
[] Trace capture range

Start address 00
End address OxFFFFFFFF

Apply] [Revert

Related information
Configure DSTREAM-PT trace mode

8.9 Configuring an Events view connection to a bare-metal
target

The Events view allows you to capture and view textual logging information from bare-metal
applications. It also allows you to view packets generated by the Data Watchpoint and Trace (DWT)
unit on M-profile targets. Logs are captured from your application using annotations that you must
add to the source code.

Before you begin

e On M-profile targets, set the registers appropriately to enable the required DWT packets. See
the Armv7/-M Architecture Reference Manual for more information.

« Annotate your application source code with logging points and recompile it. See the 1™
and Event Viewer Example for Versatile Express Cortex-A9x4 provided with Arm®
Development Studio examples for more information.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 131 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Debugging code

Procedure

1. Select Debug Configurations... from the Run menu.

2. Select Generic Arm C/C++ Application from the configuration tree and then click New to
create a new configuration.

3. In the Name field, enter a suitable name for the new configuration, for example,
events_view_debug

4. Use the Connection tab to specify the target and connection settings:

a) Select the required platform in the Select target panel. For example, ARM Development
Boards > Versatile Express A9x4 > Bare Metal Debug > Debug Cortex-A9x4 SMP.

b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM
Family.

c) In DTSL Options, click Edit to configure DSTREAM trace and other target options. This
displays the DTSL Configuration dialog box.

e In the Trace Capture tab, either select On Chip Trace Buffer (ETB) (for a JTAG cable
connection), or DSTREAM 4GB Trace Buffer (for a Mictor cable connection).

e Inthe ITM tab, enable or disable ITM trace and select any additional settings you require.

5. Click the Files tab to define the target environment and select debug versions of the
application file and libraries on the host that you want the debugger to use.

a) In the Target Configuration panel, specify your application in the Application on host to
download field.

b) If you want to debug your application at source level, select Load symbols.

c) If you want to load additional resources, for example, additional symbols or peripheral
description files from a directory, use the Files area to add them. Click + to add resources,
click - to remove resources.

6. Use the Debugger tab to configure debugger settings.

a) Inthe Run control area:

» Specify if you want to Connect only to the target or Debug from entry point. If you want
to start debugging from a specific symbol, select Debug from symbol.

e If you need to run target or debugger initialization scripts, select the relevant options and
specify the script paths.

« If you need to specify at debugger start up, select Execute debugger commands options
and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

c) Inthe Paths area, specify any directories on the host to search for files of your application
using the Source search directory field.

d) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

7. If required, specify arguments to pass to the main () function. The methods of passing
arguments are described in About passing arguments to main().

8. Click Apply to save the configuration settings.

9. Click Debug to connect to the target. Debugging requires the Development Studio

perspective. If the Confirm Perspective Switch dialog box opens, click Yes to switch
perspective.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 132 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

When connected and the Development Studio perspective opens, you are presented with all
the relevant views and editors.

10. Set up the Events view to show output generated by the System Trace Macrocell (STM) and

Instruction Trace Macrocell (ITM) events.

a) From the main menu, select Window > Show view > Events

b) =
In the Events view, click "™, and select Events Settings.

c) In Select a Trace Source, ensure that the trace source matches the trace capture method
specified earlier.

d) Select the required Ports/Channels.

e) On M-profile targets, if required, select any DWT packets.

f) Click OK to close the dialog box.

11. Run the application for a few seconds, and then interrupt it.
You can view the relevant information in the Events view. For example:

Figure 8-9: Events view with data from the ITM source

B Commands | &5 Events 2 ‘i 2:App Console + 5% = = 0
Events
Port 1 enabled. (ETB: ITM) ()
~ Buffer Size: 8.0KB
Buffer Used: 864 B
Records in Page: 72 /—\
Records Visible: 14
Port LTS (delta) Data
1 0x20555043
1 ex332@3a30
1 0x70282031
1 0x656d6972
1 0x20323120
1 0x3120666F
1 PxPa293030
1 Bx00
1 Bx20555043
1 ®x33203a33
1 Bx70282037
1 Px656d6972
1 0x20323120
1 0x3120666F
1 RAx¥RAa?23IAIA - -

8.10 Exporting or importing an existing Arm Development
Studio launch configuration

In Arm® Development Studio, a launch configuration contains all the information to run or debug a
program. An Arm Development Studio debug launch configuration typically describes the target to

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 133 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Debugging code

connect to, the communication protocol or probe to use, the application to load on the target, and
debug information to load in the debugger.

o To use a launch configuration from the Development Studio command-line,

you must create a launch configuration file using the Export tab in the Debug
Configurations dialog box.

e You cannot import Development Studio command-line launch configurations.

e When exporting a launch configuration, Arm Development Studio resolves any
Eclipse variables that you have used. Arm Development Studio does not resolve
Eclipse variables when scripting or when using the Commands view.

Exporting an existing launch configuration

1. From the File menu, select Export....

2. Inthe Export dialog box, expand the Run/Debug group and select Launch Configurations.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Debugging code

Figure 8-10: Export Launch Configuration dialog box
Select)

Export launch configurations to the local file system. H

Select an export wizard:

> = General i
P = CfC++
> = Install
k= Java
> = Remote Systems
¥ (= Run/Debug
9s Breakpoints

4 Launch Configurations
* (= Target Configuration Editor
* = Team

@ <Back L‘M | Cancel | Finish

3. Click Next.
4. In the Export Launch Configurations dialog box:

a. Depending on your requirements, expand the CMSIS C/C++ Application group or the
Generic Arm C/C++ Application and select one or more launch configurations.

b. Click Browse... and select the required location on your local file system and click OK.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 135 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Debugging code

Figure 8-11: Select Launch Configurations for export
Export Launch Configurations ™
Select launch configurations to export 1%
Launch Configurations:
[c] ¢/c++ Application =
[€] ¢/C++ Attach to Application
[c] ¢/C++ Postmortem Debugger
[€] ¢/C++ Remote Application
v @ W CMSIS C/C++ Application
v @ ¥ Generic Arm C/C++ Application
¥ gnometris-FVP
¥ gnometris-gdbserver
¥ Hardware_linux_app
% hello-FvP
hello-gdbserver
Helloworld
& # Linux application debug
¥ Linux_app_model
% Linux_app_model (1)
% Model_connection
¥ ModelConnection
¥ my_hardware_connection

2% o linuv _ann _cannackinan

Select All || DeselectAll |

Location: [/homeﬂ/developmentstudio-workspace/launch_configurations . Browse...

(] Overwrite existing file(s) without warning

@ | <Back Next > Cancel | w

5. If necessary, select Overwrite existing file(s) without warning.
6. Click Finish.

The launch configuration files are saved in your selected location with an extension of .1aunch.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 136 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Debugging code

Importing an existing launch configuration

From the File menu, select Import....

In the Import dialog box, expand the Run/Debug group and select Launch Configurations.
Click Next.

In the Import Launch Configurations dialog box:

H Lo d -

a. In From Directory, click Browse and select an import directory.

b. In the selection panels, select the folder and the specific launch configurations you want.

Figure 8-12: Import launch configuration selection panel

* Import Launch Configurations

Import Launch Configurations _hy

Import launch configurations from the local file system @
-

From Directory: wElopmenI:studio—work5pace,:‘launch_configuratiuns” Browse..,

& (= launch_configurations & = Linux application debug.launch
& = New_configuration.launch

[| overwrite existing launch configurations without warning.

@ < Back Next > | cancel | Finish |

c. If necessary, select Overwrite existing file(s) without warning.

d. Click Finish to complete the import process.

You can view the imported launch configurations in the Debug Control panel.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 137 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Debugging code

8.11 Disconnecting from a target

To disconnect from a target, you can use either the Debug Control or the Commands view.

| e
If you are using the Debug Control view, on the toolbar, click 4]

Figure 8-13: Disconnecting from a target using the Debug Control view

&Debugtnntrolﬁﬁ‘+ w2 v B D 3@ ® vy 2y = = B

r Helloworld connected

it ARM_Cortex-A9 #1 stopped on breakpoint (SVC)

Status: connected

If you are using the Commands view, enter quit in the Command field and click Submit.

Figure 8-14: Disconnecting from a target using the Commands view

iCommandszﬁ]+ BEEREESE & == E\

Semihosting enabled automatically due to semihosting symbol detected in image 'Hellowerld.axf' =
set debug-from main

start

Starting target with image /hom
Running from entry point

wait

Execution stopped in SVC mode at breakpoint 1: 5:0x80000D18
In HelloWorld.c

5:0x80000D18 14,8 int main(void) {

Deleted temporary breakpoint: 1

break -p *S:0x80000000

Breakpoint 2 at S:0x30000000

condition 2

break-script 2 ""

ignore 2 @

break-stop-on-cores 2

unsilence 2

Breakpoint 2 unsilenced

ydevelopmentstudio-workspace/HelloWorld/Debug/HelloWorld.axf

command:|quit] || submit |

The disconnection process ensures that the target's state does not change, except for the
following:

Any downloads to the target are canceled and stopped.

Any breakpoints are cleared on the target, but are maintained in Arm® Development Studio.
The DAP (Debug Access Port) is powered down.

Debug bits in the DSC (Debug Status Control) register are cleared.

If a trace capture session is in progress, trace data continues to be captured even after Arm
Development Studio has disconnected from the target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 138 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

9. Tutorials

Contains tutorials to help you get started with Arm® Development Studio.

9.1 Tutorial: Hello World

The Hello World tutorial is for new users, taking them through each step in getting their first
project up and running.

9.1.1 Open Arm Development Studio for the first time

The first time you open Arm® Development Studio, you are prompted to add your license details.
When you have completed the tasks in this section, you are ready to use Arm Debugger.

Before you begin

e Download and install Arm Development Studio, for either:
o Linux: Installing on Linux
o Windows: Installing on Windows

e If you or your company has purchased Arm Development Studio, you need one of the
following:

o Arm user-based licensing:

The license server address or an activation code.

o FlexNet license management:
The license file or the license server address and port number.

About this task
Arm Development Studio is available for both Linux and Windows platforms.

Procedure
1. Open Arm Development Studio:
¢« On Windows, select Windows menu > Arm Development Studio <version>
e On Linux:
o GUI: Use your Linux variant's menu system to locate Arm Development Studio.

o Command line: Run <installation directory>/bin/armds ide

2. The first time you open Arm Development Studio, the Product Setup dialog box opens, which
prompts you to add your product license. You can select one of the following:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 139 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

e Manage Arm User-Based Licenses - select this option if you have purchased Arm
Development Studio and it is licensed using Arm user-based licensing. After selecting this
option, click Finish to open the Arm License Management Utility dialog box.

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https:/Im.arm.com. For assistance with user-based licensing issues, visit
https:/developer.arm.com/support and open a support case.

¢ Add product license - select this option if you have purchased Arm Development Studio
and it is licensed by FlexNet licence management. After selecting this option:

a. Click Next.

b. Enter the location of your license file, or the address and port number of your license
server, and click Next.

c. The Arm Development Studio editions that you are entitled to use are listed. Select the
edition that you require, and click Next.

d. Check the details on the summary page. If they are correct, click Finish.

¢ Obtain evaluation license - select this option if you would like to evaluate the product.
After selecting this option:

a. Click Next.

b. Log into your Developer account using your Arm Developer account email address and
password. If you do not have an account, click Create an account.

Select a network interface to which your license will be locked.
d. Click Finish.

Results

Arm Development Studio opens. See IDE Overview, which describes the main features of the user
interface.

The workspace is automatically set by default, to either:
¢ Windows: <userhome>\Development Studio Workspace

e Linux: <userhome>/developmentstudio-workspace

You can change the default location by selecting File > Switch Workspace.

9.1.2 Create a projectin C or C++

After installing and licensing Arm® Development Studio, we are going to create a simple Hello
World C project and show you how to specify the base RAM address for a target. For the

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 140 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

remainder of this tutorial, we are going to use the Arm Compiler for Embedded 6 toolchain and our
target is a Cortex®-A53 Fixed Virtual Platform, provided with Arm Development Studio.

Before you begin
e Complete Open Arm Development Studio for the first time

e Ensure you are in the Development Studio Perspective. This is the default perspective when
Arm Development Studio is first opened. To return to it, click the Development Studio button
in the top right corner.

Figure 9-1: Screenshot highlighting the button for the Development Studio Perspective.

— X

Quick Access s ‘E

Procedure
1. To create a new C project, select: File > New > Project....
2. Expand the C/C++ menu, and select C project, then click Next.

This tutorial also works with a C++ project.

3. In the C Project dialog box:
a) In the Project name field, enter zellowWorid.
b) Under Project type, select Executable > Hello World ANSI C Project.
¢) Under Toolchains, select Arm Compiler 6.
d) Click Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Tutorials

Results
Figure 9-2: The IDE after creating a new project

n Development Studio Workspace - HelloWorld/src/HelloWorld.c - Arm Development Studio IDE

File Edit Source Refactor Navigate Search Project Run Window Help

Nai# M EHQOP - SEETICC D | [Quick Access]| m |[22]d8
&5 Project Explorer 22 |+ = O [g HelloWorld.c 2 = B Z=Qutli. ® %Brea. + = O
EE] § = 3® Name : HelloWorld.c[] R e % =
~ 5 HelloWorld 1e U stdio.h
5 @l Includes 11 #include <stdio.h> u stdlibh
« 8 i 12 #include <stdlib.h> o mainvoid): int
13 ‘
(5l HelloWorld.c 149 int main(void) {
15 puts("!!!Hello World!!!"); /* prints !llHello World!!! */
16 return EXIT_SUCCESS;
17 }
18

¥ Debug Control 32 + = a8
HArp WD
Q-

There are no debug connections. To

add a debug connection: B Console 22 M Commands ®=Variables s Registers ‘E Memory it Disassembly + mBE~-0~-=0
¥ Create a debug connection... No consoles to display at this time.

"2 Connect with an existing Config...

& HelloWorld

Next steps
You can add existing source files to your project by dragging and dropping the file into the project
folder, or by selecting File > Import > General > File System.

9.1.3 Configure your project

Before you build the gel1owor1d project, you must specify some configuration settings.

Before you begin
Complete Create a project in C or C++

About this task
You must specify:

e The target processor or architecture you want to compile for.

e That the compiler must add debug symbols into the image file, so that the debugger can debug
it at source-level.

e The address in RAM in your FVP target where you want the linker to base your image.

This ensures that the application is built and loaded correctly on to your target, and that you can
debug the image at source-level.

Procedure

1. In the Project Explorer view, right-click the ne11oworid project and select Properties. The
Properties for HelloWorld dialog box opens.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 142 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

2. Add debug symbols into the image file:
a) Expand C/C++ Build, and select Build Settings.
b) Ensure the Configuration is set to Debug [Active].

3. Configure the target. In the Tool Settings tab, select All Tools Settings > Target:
a) From the Target CPU dropdown, select Cortex-A53 AArché4.
b) From the Target FPU dropdown, select Armv8 (Neon).

4. Configure the image layout. In the Tool Settings tab, select Arm Linker 6 > Image Layout:
a) Inthe RO base address field, enter 0x80000000.

5. Click Apply and Close.
6. If you are prompted to rebuild the index, click Yes.

9.1.4 Build your project

You can now build your Helloworld project!

Before you begin
Complete these tasks:

o Create a project in C or C++
o Configure your project

Procedure
In the Project Explorer view, right-click the He11owor1d project and select Build Project.

Results

When the project has built, in the Project Explorer view, under Debug, locate the Helloworld.axf
file.

The .axf file contains the object code and debug symbols that enable Arm® Debugger to perform
source-level debugging.

Debug symbols are added at build time. You can either specify this manually, using
the -g option when compiling with Arm Compiler for Embedded 6, or you can set
this to be default behavior. See Configure your project for details.

9.1.5 Configure your debug session

In Arm® Development Studio, you configure a debug session with the New Debug Connection
wizard. This wizard enables you to connect to your target.

About this task
Depending on your requirements, you can:

o Configure a connection to an FVP for bare-metal application debug

e From the command-line, configure a connection to an FVP for bare-metal application debug

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 143 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Tutorials

o Configure a connection to an FVP for Linux application debug

e Configure a connection to an FVP for Linux kernel debug

The following example takes you through configuring a bare-metal Model Connection to a
Cortex®-A53 Fixed Virtual Platform (FVP), using the project you created in the previous section of
this tutorial.

Procedure

1. Create a .ds script so that the FVP handles semihosting, instead of Arm Debugger:

a) From the main menu, select File > New > Other....

b) In the New dialog box, select Arm Debugger > Arm Debugger Script and click Next.

c) Click Workspace... and select the HelloWorld project as the location for this script. Click
OK.

d) In the File Name field, name this script use model semihosting and click Finish. The empty
script opens in the Editor window.

e) Add the following code to the script and press Ctrl + S to save:

set semihosting enabled off

Figure 9-3: Editor window with semihosting script.

[HelloWorld.c =l use_model_semihosting.ds &

1set semihosting enabled off
2

2. From the main menu, select File > New > Model Connection.

3. In the Model Connection dialog box, specify the details of the connection:
a) Enter a name for the debug connection, for example HelloWorld_FVP.
b) Select Associate debug connection with an existing project, and select the project that you
created and built in the previous section Build your project.
¢) Click Next.

4. In the Target Selection dialog box, specify the details of the target:
a) Select Arm FVP (Installed with Arm DS) > Base_A53x1.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 144 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

Figure 9-4: Select Base_A53x1 model

n Model Connection a X
Target Selection "ﬁv
Select a target to debug

I type filter text l

> (© Recently Used A
¢ Arm FVP
v @ Arm FVP (Installed with Arm DS)
B Base_A32x1
B Base_A35x1
B Base_A53x1
B Base_A55x1
B Base_A55x4_A75x2
B Base_A55x4_A76x2
B Base_A57x1
B Base_A57x2_A53x4
B Base_A72x1
B Base A72x2_A53x4 v

Add a new model...

Device: Base_A53x1
Core(s): Cortex-A53

Location: Configuration Database - configdb

No description available

@ < Back Next > | Finish I Cancel

b) Click Finish.

5. In the Edit Configuration dialog box, ensure the right target is selected, the appropriate
application files are specified, and the debugger knows where to start debugging from:
a) Under the Connection tab, ensure that Arm FVP (Installed with Arm DS) > Base_A53x1 >
Bare Metal Debug > Cortex-A53 is selected.
b) Under Bare Metal Debug, in the Model parameters field, add the following parameter:

-C bp.secure memory=false

This parameter disables the TZC-400 TrustZone memory controller included in the Base_A53x1
FVP. By default, the memory controller refuses all accesses to DRAM memory.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 145 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Tutorials
Figure 9-5: Edit configuration Connection tab
A Edit Configuration O X
Edit configuration and launch. ‘6\.

Name: | HelloWorld_FVP
<~ Connection , i Files % Debugger ® OS Awareness * Arguments ™ Environment w3 Export

Select target 2

This debug configuration is assodiated with Arm FVP (Installed with Arm DS) / Base_AS53x1. Select which debug operation to use.
Currently selected: Bare Metal Debug / Cortex-A53

v Arm FVP (Installed with Arm DS)
v Base_A53x1
v Bare Metal Debug
Cortex-A53
> Linux Kernel Debug

Arm Debugger will connect to an FVP to debug a bare metal application.

Connections

(®) Launch a new model Model parameters | -C bp.secure_memory:falsd
Bare Metal Debug
() Connect to an already running model Connection address

DTSL Options Edit.. Configure trace or other target options. Using "default” configuration options

Revert Apply
@ Close
c) Inthe Files tab, select Target Configuration > Application on host to download >
Workspace.
d) Click and expand the HelloWorld project and from the Debug folder, select nelloworld.axt
and click OK.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 146 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Tutorials

Figure 9-6: Select helloworld.axf file

d

82 Edit Configuration

Create, edit or choo

Select a file:

Name: | HelloWorld | v &£ HelloWorld l

<= Connection [{si Fi & cproject

= .project
> & settings
v & Debug

Application on g HelloWorld.axf
L& makefile
File System. |\ N SeatEi
L® sources.mk

b= (o

HelloWorld_FVP.launch

Load sym
Loagsymbol | ¢
B > &2 RemoteSystemsTempFiles :

File System}

Target Configurai

Files

il

[+

@ OK I [Cancel ‘
|

Apply

@) | Debug | l Close

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 147 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Tutorials

Figure 9-7: Edit configuration Files tab

Edit configuration and launch.
@ Afile has been specified to be downloaded to the target, which will require the core to be stopped, but "Connect Only" has
also been specified on the Debugger tab.

Name: 'my_hardware_connection

<e- Connection i Files % Debugger| % OS Awareness| ®- Arguments| B Environment |ei Export

Target Configuration
Application on host to download:

${workspace_loc:/my_hardware_connection/my_hardware_connection.axf}

File System... | .| & Load symbols

Files

| Load symbols from file =

File System... | Workspace...

[+

Revert Apply

@ Close | Debug

e) Inthe Debugger tab, select Debug from symbol.
f) Enable Run target initialization debugger script (.ds/.py) and click Workspace...
g) Select the use model semihosting.ds script and click OK.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 148 of 222

Arm” Development Studio Getting Started Guide

Figure 9-8: Debug from symbol main

n Edit Configuration

Document ID: 101469_2022.2_00_en
Version 2022.2

Tutorials

Edit configuration and launch. ﬁ
Create, edit or choose a configuration to launch an Arm Debugger session.

Name: | HelloWorld_FVP

<= Connection |lE—1‘¢ Files |it~ Debuggé} @ 0S Awanreness;| o= Argument§ | Erwironmenti (% Exporti

™~
Run control
(O Connect only (O Debug from entry point @ Debug from symbol ‘ main
Run target initialization debugger script (.ds / .py)
l ${workspace_loc;/HelloWorld/use_model_semihosting.ds} “ ‘File System... |Workspace...
] Run debug initialization debugger script (.ds / .py)
File System... Workspace...
[] Execute debugger commands
W
< >
Revert [Apply
@ Debug Close

6. Click Debug to load the application on the target, and load the debug information into the

debugger.

Results

Arm Development Studio connects to the model and displays the connection status in the Debug

Control view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

Figure 9-9: Debug Control View

¥ Debug Control 2 + - O
BNAvER DRI ArS
~ & HelloWorld_FVP connected
ARM_Cortex-A53 #1 stopped on breakpoint (EL3h)

Status: connected

The application loads on the target, and stops at the main () function, ready to run.
Figure 9-10: main () in code editor

[£] HelloWord.c &3 = O

3@ Name : HelloWeorld.c[]
18

11 #include <stdio.h>

12 #include <stdlib.h>

13
% 14- int main(void) {
15 puts(”!!!Hello World!!!™}; /* prints !!!Hello World!!! */
16 return EXIT_SUCCESS;
17 }

18

9.1.6 Application debug with Arm Debugger

Now that you have created a debug configuration and the application is loaded on the target, it is
time to start debugging and stepping through your application.

Running and stepping through the application

Use the controls provided in the Debug Control view to debug your application. By default, these
controls do source level stepping.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 150 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Tutorials

% Debug Control 2 | + = 8

WAYP IR Y~
~ & HelloWorld_FVP connected
#ilE ARM_Cortex-A53 #1 stopped on breakpoint (EL3h)

Status: connected

E - Click to continue running the application after loading it on the target.
E - Click to interrupt or pause executing code.
) Click to step through the code.

=" - Click to step over a source line.

=1 Click to step out.

=
='1-Thisis a toggle. Click this to toggle between stepping instructions and stepping source code.

This applies to the above step controls.
Other views display information relevant to the debug connection

o Target Console view displays the application output.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

Figure 9-11: Target console output

B Target Console 22 | + B EREE == 0

terminal _@: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003
CADI server started listening to port 7000

Info: FVP_Base Cortex A53x1: CADI Debug Server started for ARM Models...

cadi server is reported on port 7008
I'11Hello World!!!

e Commands view displays messages output by the debugger. Also use this view to enter Arm®
Debugger commands.

Figure 9-12: Commands view

i
i
u]

B Commands 2 + EEREEES v &
+set semihosting enabled off ~
loadfile "C:\Development Studio Workspace\HelloWorld\Debug\HellolWorld.axf"

Loaded section ER_RO: EL3:0x0000000080000000 ~ EL3:0x0000000080001687 (size ©x1688)

Loaded section ER_RW: EL3:0x0000000080001688 ~ EL3:0x00000000800016AF (size ©x28)

Entry point EL3:0x0000000080000000

set debug-from main

start

Starting target with image C:\Development Studio Workspace‘\HelloWorld\Debug\HelloWorld.axf
Running from entry point

wait

Execution stopped in EL3h mode at breakpoint 1: EL3:0x00000000800015B8

In HellokWorld.c

EL3:0x0000000080001588 14,0 int main(void) {

Deleted temporary breakpoint: 1

wait

continue

Execution stopped in EL3h mode at EL3:0x00000000800012F8

In _sys_exit (no debug info)

EL3:0x00000000800012F8 HLT #0x 000

W

Command:| Press (Ctrl+Space) for Content Assist | Submit

o C/C++ Editor view shows the active C, C++, or Makefile. The view updates when you edit
these files.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 152 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

Figure 9-13: Code Editor view

[g Helloworld.c 2 | 5| use_model_semihosting.ds = O
3% Name : HelloWorld.c[]
16

11 #include <stdio.h>
12 #include <stdlib.h>

13

14=int main(void) {

15 puts("!!!Hello World!!!"™); /* prints !!lHello World!!! */
16 return EXIT SUCCESS;

17 }

18 |

o Disassembly view shows the built program as assembly instructions, and their memory
location.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 153 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2

Tutorials
Figure 9-14: Disassembly view
1} Disassembly 2 | + v =708
B YO v’ <Next Instruction> ” 100 =
\ Address | Opcode | Disassembly
EL3: 0x00000000800012AC LDR x30, [sp], #0x10 A
EL3:0x00000000800012B0 RET
_sys_command_string
EL3:0x00000000800012B4 SuB sp,sp,#0x10
EL3:0x00000000800012B8 SXTW x9,wl
EL3:0x00000000800012BC MoV x8 ,x0
EL3:0x00000000800012C0 MoV x1,sp
EL3:0x00000000800012C4 STP x0,x9,[sp],#0x10
EL3:0x00000000800012C8 MoV wo, #0x15
EL3:0x00000000800012CC HLT #0xf000
EL3:0x00000000800012D0 cMP wo, #0
EL3:0x00000000800012D4 CSEL x0,x8,xzr,EQ
EL3:0x00000000800012D8 RET
_sys_exit
EL3:0x00000000800012DC SuB sp,sp,#0x10
EL3:0x00000000800012E0 MoV w8, #0x26
EL3:0x00000000800012E4 MOVK w8,#2,LSL #16
EL3:0x00000000800012E8 SXTW x9,w0
EL3:0x00000000800012EC MoV x1,sp
EL3:0x00000000800012F0 STP x8,x9, [sp,#0]
EL3:0x00000000800012F4 MOV wo , #0x18
% EL3:0x00000000800012F8 HLT #0x1000
EL3:0x00000000800012FC B _sys_exit+32 ; Ox800012FC
__use_no_heap_region
EL3:0x0000000080001300 RET
__heap_region$guard
EL3:0x0000000080001304 RET
__Heap_ProvideMemory
EL3:0x0000000080001308 ADD x9,x0,#8
EL3:0x000000008000130C MoV x8 ,x0
EL3:0x0000000080001310 LDR x0,[x9,#0]
EL3:0x0000000080001314 CBZ x0,__Heap_ProvideMemory+28 ; 0x80001324
EL3:0x0000000080001318 CcMP x0,x1
EL3:0x000000008000131C ADD x9,x0,#8
EL3:0x0000000080001320 B.CC __Heap_ProvideMemory+4 ; 0x8000130C
EL3:0x0000000080001324 LDR x9,[x8,#0]
EL3:0x0000000080001328 ADD x8,x8,x9
EL3:0x000000008000132C CMP x8,x1
EL3:0x0000000080001330 B.EQ __Heap_ProvideMemory+64 ; 0x80001348
EL3:0x0000000080001334 ADD x8,x1,#7
EL3:0x0000000080001338 AND x8,x8 , #oxfffHffffffffffo
EL3:0x000000008000133C ADD x9,x1,x2
EL3:0x0000000080001340 ORR x1,x8,#8

® indicates the location in the code where your program is stopped. In this case, it is at the
main () function.

* Memory view shows how the code is represented in the target memory. For example, to view

how the string Hello World from the application is represented in memory:
1.
2.

Open the Memory view.

In the Address field, enter smain and press Enter on your keyboard. The view displays the

contents of the target's memory.

Change the displayed number of bytes to 96 and press Enter.

Right-click on the column headings, and select Characters.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 154 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2
Tutorials

Figure 9-15: Adding Characters column to Memory view

‘B Memory 2|+

I~ 48 v In v & 8 = =

) "SUHam

| % >

ELS: 0800000008000

Dat

...15B8
...15CC
...15E@
...15F4

..1688

5. Select and highlight the words Hello World.

oxD1Be83FF
OxBOBOBFFF
OxF9400BFE
Oxea74743A
0x00720021

OxFOBOBBFE
OxBOBOOBES
Ox910083FF
0x48212121
ax49530077

Figure 9-16: Memory view

‘B Memory 2+

Bxz

axc

&xC
BxE
OxE

£ (] c a a1 " LY

EL3:0x000000008000:000¢
Data (Hexadecimal: 4 bytes)
Characters

Reset Columns

Qe

) - .@‘L‘@’ v Ip, w a")"_’ o =

= O

) v‘&unaw

[»

EL3:0x000000083088 xxxx

Data

(Hexadecimal: 4 bytes) |

Characters |

...15B8
..15C8

OxD18@83FF
0x9117EG0Q

OxFOBOBEFE
OxBO9BOBFFF

Ox2A1FB3ESB
OxBODOOBES

0x96000000
Bx97FFFAAT

&

...15D8
...15E8
...15F8

..1688

OxBS400BES
oxD65FB3Ca
0x48212121
0x00720021

Ox2ABBO3ED
Ox0a74743A
@x6F6CHCHS
x49530077

OxF940BBFE
Ox0a74743A
ax726F5720
Ox52545247

Px910083FF @ * @

BxBO7ATASA L P o o o
Bx2121646C Il1'lHello World!!
Bx203A4445 }.r .w.SIGRTRED:

In the above example, the Memory view displays the hexadecimal values for the code and the
ASCII character encoding of the memory values, which enable you to view the details of the code.

After completing your debug activities, you can disconnect the target.

9.1.7 Disconnecting from a target
To disconnect from a target, you can use either the Debug Control or the Commands view.

e If you are using the Debug Control view, click Disconnect from Target on the toolbar.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 155 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Tutorials

Figure 9-17: Disconnecting from a target using the Debug Control view

%#Debugtontrolzﬁ‘+ L v B D2 R oy 2y = = 0

r Helloworld connected

it ARM_Cortex-A9 #1 stopped on breakpoint (5VC)

Status: connected

If you are using the Commands view, enter quit in the Command field, then click Submit.

Figure 9-18: Disconnecting from a target using the Commands view

B commands N.|+ B EBRESEES >

Semihosting enabled automatically due to semihosting symbol detected in image 'HelloWorld.axf' =
set debug-from main

start

Starting target with image /hom
Running from entry point

wait

Execution stopped in SVC mode at breakpoint 1: 5:0x80000D18
In HelloWorld.c

$:0x80008D10 14,0 int main(void) {

Deleted temporary breakpoint: 1

break -p *S5:0x80000000

Breakpoint 2 at S:0x80000000

condition 2

break-script 2 ""

ignore 2 @

break-stop-on-cores 2

unsilence 2

Breakpoint 2 unsilenced

n
1
i

ydevelopmentstudio-workspace/HelloWorld/Debug/HelloWorld. axf

Command:[quid l Submit |

The disconnection process ensures that the state of the target does not change, except for the
following case:

Any downloads to the target are canceled and stopped.

Any breakpoints are cleared on the target, but are maintained in Arm® Development Studio.
The DAP (Debug Access Port) is powered down.

Debug bits in the DSC (Debug Status Control) register are cleared.

If a trace capture session is in progress, trace data continues to be captured even after Arm
Development Studio has disconnected from the target.

9.2 Tutorial: Using FVPs

The tutorial for using Fixed Virtual Platforms (FVPs) takes new users through basic scenarios of
using FVPs with Arm® Development Studio.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 156 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

9.2.1 Overview: FVPs

A Fixed Virtual Platform (FVP) is a simulated model of a development platform, including processor,
memory, and peripherals.

You can use FVPs for bare-metal debugging and application development instead of a physical
target. You can also capture trace output from an FVP. Some FVPs are provided with Arm®
Development Studio. If required, you can manually add other FVPs to Arm Development Studio.

This tutorial builds on the Hello world tutorial and guides you through some of these usage
scenarios.

Related information
Fast Models Fixed Virtual Platform Reference Guide

9.2.2 Launch and connect to an FVP in Arm Development Studio

You can launch and connect to Arm Fixed Virtual Platforms (FVPs) in Arm® Development Studio.
This tutorial shows you how to launch an FVP, that is included with Arm Development Studio, using
the Development Studio IDE.

Procedure

1. Create a new model connection.

a) Open the Debug Connection dialog box. From the main menu, select File > New > Model
Connection. You can also select Create a debug connection in the Debug Control view to
create a new connection.

b) In the Debug Connection dialog box, specify the details of the connection. Enter a name
for the debug connection and click Next.

If you have an existing project, select Associate debug connection with an
existing project, and select the project that you want to debug.

c) In the Target Selection dialog box, specify the details of the target. Under Arm FVP
(Installed with Arm DS), select the FVP you want to connect to and click Finish. For
example, if you want to connect to a single-core Cortex®-A53 Base Platform FVP, select
Arm FVP (Installed with Arm DS) > Base_A53x1.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 157 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

Figure 9-19: Specify the details of the target.

B Model Connection] X

Target Selection Jﬁ

Select a target to debug

type filter text

v @ Arm FVP (Installed with Arm DS) A
B Base A32x1
B Base A35x1
B Base A53x1
B Base A55x1
B Base A55x4 A75x2
B Base A55x4 A76x2 >

Add a new model...

Device: Base A53x1
Core(s): Cortex-A53

Location: Configuration Database - configdb

@ < Back | Next > Finish Cancel

2. Edit your model configuration.

a) In the Edit Configuration dialog box, under the Connection tab, ensure that you select the
correct target for your debug operation. For example, to select a single-core Cortex-A53
for bare-metal debug, select Arm FVP (Installed with Arm DS) > Base_A53x1 > Bare Metal
Debug > Cortex-A53.

b) Under Bare Metal Debug, in the Model parameters field, specify the parameter for the
connection as -c bp.secure memory=false.

o
For Cortex-M models, the parameter to add is -c fvp mps2.DISABLE GATING=1.

Note

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 158 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2

Tutorials
c) Click Debug to launch the connection to the FVP.
Figure 9-20: Edit the configuration and launch.

n Edit Configuration O X
Edit configuration and launch. @\.
Name: | TestConnect1
<= Connection & Files| % Debugger| % OS Awareness ®* Arguments ™ Environment 4 Export

Select target e

This debug configuration is associated with Arm FVP (Installed with Arm DS) / Base_A53x1. Select which debug operation to use.

Currently selected: Bare Metal Debug / Cortex-A53

v Arm FVP (Installed with Arm DS)
Vv Base_A53x1
v Bare Metal Debug
Cortex-A53
Linux Kernel Debug
Arm Debugger will connect to an FVP to debug a bare metal application.
Connections
(® Launch a new model Model parameters
Bare Metal Debug
(U Connect to an already running model Connection address 127.0.0.1:7100
DTSL Options Edit..| Configure trace or other target options. Using “default” configuration options
v
Revert Apply
® Close

Results

By default, the CLCD window launches. You can disable this default action with the parameter
-C bp.vis.disable visualisation=1. See Using the CLCD window for more information.

Figure 9-21: The CLCD window.

W Fast Models - CLCD Cortex-A53x1 Base FVP X

TON USERSH 1..8 esssssss 7 Daughter swsssssss Rate Limit ON
tON BOOTSH 1..2 ssssssss

Total Instr: @ Total Time: = i LeftCirl+LeftAlt

The Debug Control view displays the status of the connection.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 159 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

Figure 9-22: View the status of your connection.

% Debug Control # + — O
BAIYPUNIRRIYY v

v @& TestConnect1 connected
& Cortex-A53 #1 stopped (EL3h)

Status: connected

Related information
Create a new model configuration

9.2.3 Configure a connection to an FVP for debug

In Arm® Development Studio, you can create and change configurations for a debugging session on
a Fixed Virtual Platform (FVP) connection using the Debug Configurations dialog box.

Procedure
To open the Debug Configurations dialog box, right-click the FVP you want to configure in the
Debug Control view, then click Debug Configurations....

Results

In this dialog box, the tabs contain further options for your connection. For more information on
the functionality of these tabs, see the following topics in the Perspectives and Views chapter of the
Arm Development Studio User Guide.

o Connection tab

o Files tab

e Debugger tab

e OS Awareness tab
e Arguments tab

e Environment tab

e Exporttab

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 160 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

9.2.4 Run applications on an FVP

Arm FVPs (Fixed Virtual Platforms) can run applications in a simulation of real hardware.

Procedure
1. Link your project with the model configuration you are using and launch the model connection.
o For new model connections:

a. Open the Debug Connection dialog box. From the main menu, select File > New >
Model Connection. You can also select Create a debug connection in the Debug
Control view to create a new connection.

b. In the Debug Connection dialog box, specify the details of the connection. Select
Associate debug connection with an existing project and then select the project that
you want to debug. Enter a name for the debug connection and click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 161 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Tutorials
Figure 9-23: Associate the debug connection with your project.

n Model Connection O X
Debug Connection

Enter a connection name and optionally associate with an existing project

Debug connection name: | TestConnect1

Associate debug connection with an existing project

&> HelloWorld
@ < Back Next > Finish Cancel

c. Inthe Target Selection dialog box, specify the details of the target. Under Arm FVP
(Installed with Arm DS), select the FVP you want to connect to and click Finish.

e For existing model connections:

a. Open the Debug Configurations window. Right-click your connection in the Debug
Control view and select Debug Configurations....

b. In the Files tab, specify the location of the executable file for the project you want to
debug. Click Apply then Debug.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 162 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Tutorials

Figure 9-24: Specify the location of your project's executable file.

Name: ‘ TestConnect1

<= Connection [@ Files ~ %% Debugger‘ % OS Awareness| % Arguments | I Environment e Export|

Target Configuration

Application on host to download:

File System... | Workspace... Load symbols
Files
Load symbols from file e

File System... 'Workspace...

Revert Apply

(@))]
\Z/

Debug Close

To run the application, click .EP . Use the controls provided in the Debug Control view to
debug your application. See Application debug with Arm Debugger for more information.

3. When you are finished, disconnect from the target.
» If you are using the Debug Control view, click Disconnect from Target on the toolbar.

e If you are using the Commands view, enter quit in the Command field, then click Submit.

9.2.5 Capture trace output from an FVP

Trace capture from a Fixed Virtual Platform (FVP) provides you with a detailed output of all the
instructions that are executed in a debug session. You can enable trace capture in the Debug and
Trace Services Layer (DTSL) Configuration dialog box.

Procedure

1. Open the DTSL Configuration dialog box. In the Debug Control view, right-click on the model
configuration you want to enable trace capture on and select DTSL Options.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Tutorials

2. In the Debug and Trace Services Layer (DTSL) Configuration dialog box, select the Model
Trace option under the Trace Buffer tab.

o
% Here you can also change the trace buffer size in the Trace Buffer Size drop-
down menu.

Figure 9-25: Trace Buffer tab.

n Debug and Trace Services Layer (DTSL) Configuration

Debug and Trace Services Layer (DTSL) Configuration
Add, edit or choose a DTSL configuration. WARNING: This will clear the Trace Buffer

v B X Name of configuration: default

Trace Buffer . Core Trace.

O None
(® Model Trace

Trace Buffer Size 4GB v

Apply Revert

@ oK Cancel

3. In the Core Trace tab, select the processor on which you want to enable trace capture.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 164 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Tutorials

Figure 9-26: Core Trace tab.

® Debug and Trace Services Layer (DTSL) Configuration []

Debug and Trace Services Layer (DTSL) Configuration
Add, edit or choose a DTSL configuration. WARNING: This will clear the Trace Buffer

v B X Name of configuration: default

| ,
‘Trace Buffer| Core Trace

[]Enable Cortex-A53 trace

Apply Revert

@ oK Cancel

4. Apply your settings and close the dialog box, select Apply and then OK.

Next steps
In the Trace view, you can see all the instructions that are executed in a debug session.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 165 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2

Tutorials
Figure 9-27: Some example trace capture in the Trace view.
% 5-Trace 2 WG A AP G v v =
Trace Capture Device Source Ranges
v BB fffer Sizg; 4.0 GB
uffer Used: 6.1 KB
Records REage: 1923 | w
_flsbuf 3031% ~
_memset - u
_ scatterload_zeroinit -
_freopen_locked -
puts 3.94%
_fclose_internal - 3.46%
_initio 2.36%
strlen 2.24%
fputc 2.15%
memset 1.97%
setvbuf 1.97%
_fflush 1.70%
free 1.58% v
. Index Address Opcode | | Detail A
<Unknown>
EL3:0x0000000080000038 LDP x21,x30,[sp],#0x10
EL3:0x000000008000003C & RET
EL3:0x000000008000005C LDP x0,x1,[sp],#0x10
EL3:0x0000000080000060 ¢ BL _sys_exit ; ©x80ee1eD8
_sys_exit
EL3:0x00000000800010D8 SuB sp,sp,#0x10
EL3:0x00000000800016DC MoV w8,#0x26
EL3:0x00000000800010E0 MOVK w8,#2,LSL #16
EL3:0x00000000800010E4 SXTW X9,we
EL3:0x00000000800010E8 MoV x1;isp
EL3:0x00000000800010EC STP x8,x9,[sp,#0]
Fl 3:8%x0000AAAARAAATAFA Mov wh _#OX1R v
< >

9.2.6 Add an external FVP to Arm Development Studio

Some Fixed Virtual Platforms (FVPs) are included with the installation of Arm® Development
Studio. To use an Arm FVP that is not provided with Development Studio, you must first add it to

the paTa environment variable of your OS.

Procedure

1. Addthe <install directory>/bin directory to your patu environment variable and restart Arm
Development Studio.

e For Windows, enter set PATH=<your model path>\bin;%PATHS

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 222

Document ID: 101469_2022.2_00_en
Version 2022.2
Tutorials

Arm® Development Studio Getting Started Guide

e For Linux, enter export PATH=<your model path>/bin:S$PATH
2. Ensure that the modified path is available for future sessions:
e For Windows, right-click This PC, select Properties > Advanced system settings, then click
Environment Variables. Then under User Variables, append ; <your model path>\bin t0
any existing paTa variable.

e For Linux, set up the pats in the appropriate shell configuration file. For example, in
.bashrc, add the line export PATH=<your model path>/bin:$PATH.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 167 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Troubleshoot Arm Development Studio

10. Troubleshoot Arm Development Studio

Describes how to diagnose problems when debugging applications using Arm® Debugger.

10.1 Arm Linux problems and solutions
Lists possible problems when debugging a Linux application.
You might encounter the following problems when debugging a Linux application.

Arm Linux permission problem

If you receive a permission denied error message when starting an application on the target then
you might have to change the execute permissions on the application:

chmod +x <myImage>

A breakpoint is not being hit

You must ensure that the application and shared libraries on your target are the same as those on
your host. The code layout must be identical, but the application and shared libraries on your target
do not require debug information.

Operating system support is not active

When Operating System (OS) support is required, the debugger activates it automatically where
possible. If OS support is required but cannot be activated, the debugger produces an error. :

ERROR (CMD16-LKN36) :
! Failed to load image "gator.ko"
! Unable to parse module because the operating system support is not active

OS support cannot be activated if:

e Debug information in the vm1inux file does not correctly match the data structures in the kernel
running on the target.

e |tis manually disabled by using the set os enabled off command.

To determine whether the kernel versions match:

e stop the target after loading the vm1inux image

e enterthe print init nsproxy.uts ns->name command
o check that the s1 output is correct:

$1 = {sysname = "Linux", nodename = " (none)", release = "3.4.0-rc3", version =
"#1 SMP Thu Jan 24 00:46:06 GMT 2013", machine = "arm", domainname = " (none)"}

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 168 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Troubleshoot Arm Development Studio

Related information
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel

10.2 Enabling internal logging from the debugger
Describes how to enable internal logging to help diagnose error messages.

On rare occasions an internal error might occur, which causes the debugger to generate an
error message suggesting that you report it to your local support representatives. You can help
to improve the debugger, by giving feedback with an internal log that captures the stacktrace
and shows where in the debugger the error occurs. To find out your current version of Arm®
Development Studio, you can select Help > About Arm Development Studio IDE in the IDE, or
open the product release notes.

To enable internal logging in the IDE, enter the following in the Commands view of the
Development Studio perspective:

1. To enable the output of logging messages from the debugger using the predefined DEBUG
level configuration: 1og config debug

2. Toredirect all logging messages from the debugger to a file: 10g file <debug.log>

Enabling internal logging can produce very large files and slow down the debugger
significantly. Only enable internal logging when there is a problem.

Related information
Commands view

10.3 FTDI probe: Incompatible driver error

When connecting your FTDI probe to Arm® Development Studio, you might see an error message
when browsing for the probe.

The error is specific to Linux installations of Arm Development Studio:

Browsing failed: Incompatible virtual COM port driver (ftdi sio) must be unloaded to
use FTDI MPSSE JTAG probe. See AN 220 FTDI Drivers Installation Guide for Linux.

Cause

The Linux operating system automatically loads an incompatible driver when the FTDI probe is
plugged in.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 169 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Troubleshoot Arm Development Studio

Solution

1. To unload the incompatible driver, enter the following commands in your Terminal:

sudo rmmod ftdi sio
sudo rmmod usbserial

2. Browse for your FTDI probe again, and it is now listed in the Connection Browser.

Related information
FTDI Drivers Installation Guide for Linux

10.4 Target connection problems and solutions
Lists possible problems when connecting to a target.

Failing to make a connection
The debugger might fail to connect to the selected debug target for the following reasons:

e You do not have a valid license to use the debug target.

e The debug target is not installed or the connection is disabled.

e The target hardware is in use by another user.

e The connection has been left open by software that exited incorrectly.

e The target has not been configured, or a configuration file cannot be located.

e The target hardware is not powered up ready for use.

e The target is on a scan chain that has been claimed for use by something else.

e The target hardware is not connected.

e You want to connect through gdbserver but the target is not running gdoserver.
e Thereis no ethernet connection from the host to the target.

e The port number in use by the host and the target are incorrect.
Check the target connections and power up state, then try and reconnect to the target.

Debugger connection settings
When debugging a bare-metal target the debugger might fail to connect for the following reasons:

e Heap Base address is incorrect.
e Stack Base (top of memory) address is incorrect.
e Heap Limit address is incorrect.

e Incorrect vector catch settings.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 170 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Troubleshoot Arm Development Studio

Check that the memory map settings are correct for the selected target. If set incorrectly, the
application might crash because of stack corruption or because the application overwrites its own
code.

Related information
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 171 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

11. Migrating from DS-5 to Arm
Development Studio

Describes the differences between DS-5 Development Studio (DS-5) and Arm® Development
Studio and provides information to aid migration from DS-5 to Arm Development Studio.

11.1 Add an Existing License Server

If Arm® Development Studio has no license information stored, you can add it when Arm
Development Studio launches. This activity describes how to add an existing license server and
specify the Arm Development Studio edition you want to use.

About this task
If no product license information exists for Arm Development Studio, the Add License dialog is
shown when Arm Development Studio first opens:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 172 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-1: Product Setup dialog box when you first open Arm Development Studio.

B Product Setup O X

Add License |
Select the type of license that you would like to use

(®) Manage Arm User-Based Licenses

Select this option to launch the Arm User-Based License manager.
If a User-Based License is activated, the Armn DS IDE will need to be restarted for the license to take effect

() Add preduct license
Select this option to use an existing license file or license server
() Obtain evaluation license

Select this option to obtain a 30-day Gold Edition evaluation license

Please visit Arm's web licensing portal to obtain the license for an already purchased product.

If you cannot access Arm's web licensing portal then please contact "license.support@arm.com” providing
your MAC address and product serial number (if known],

< Back Mext = Cancel

e To choose not to add a license to Arm Development Studio, you can click Skip.
If you choose not to add a license, some functionality is disabled.

e You can add license information to Arm Development Studio at any time using
the Arm License Manager. To open the Arm License Manager, select Help >
Arm License Manager.

This activity assumes that you have not skipped adding a license to Arm Development Studio and
that you are using an existing licence. If you are using user-based licensing, follow the instructions
in Add a license using the Arm License Manager.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 173 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2

Migrating from DS-5 to Arm Development Studio

Procedure
1. Open Arm Development Studio IDE.

2.

In the Product Setup dialog box, select Add product license and click Next.
Figure 11-2: Enter existing license details screen.

- Product Setup

Enter existing license details

Enter the license details into the form below

@ License Server

8000 | @ | license.server.com|

(O License File

Please visit Arm's web licensing portal to obtain the license for an already
purchased product.

If you cannot access Arm's web licensing portal then please contact
“license.support@arm.com” providing your MAC address and product serial
number (if known).

< Back Next > Skip Cancel

Browse...

In the Enter existing license details screen, in the License Server field, enter the license server

port and address and click Next.

In the Activate Product screen, select the appropriate Arm Development Studio edition from

the provided list.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

Only editions enabled by your license file are listed.

Figure 11-3: Activate product screen.

B Product Setup O X

Activate product
Select a product to activate

Products

» Arm Development Studio Gold Edition
[] Arm Development Studio Sikver Edition
[] Arm Development Studio Bronze Edition

Licenses

Add more

< Back Mext = Finish Cancel ‘

5. To save and apply your changes, click Next and then Finish.

Next steps

You can change or add license information in Arm Development Studio using the Arm License
Manager. You can access the Arm License Manager by selecting either Help > Arm License
Manager or Window > Preferences > Arm DS > Product Licenses.

Related information
Add a license using Product Setup on page 27/
Arm Compiler Licensing Configuration

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 175 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

11.2 Default Workspace Location

When launching for the first time, Arm® Development Studio uses a default workspace in your
home directory. After the first launch, Arm Development Studio automatically opens the last used
workspace.

The default workspace location is:

e Windows: user directory/Development Studio Workspace

e Linux: home/Development Studio Workspace

To change to a different workspace directory in Arm Development Studio, select File > Switch >
Workspace.

To change the default behavior and specify a workspace on startup, navigate to Window >
Preferences > General > Startup and Shutdown > Workspaces and tick Prompt for workspace on
startup.

11.3 Combined C/C++ and Debug Perspectives

Arm® Development Studio has a new IDE perspective, called Development Studio. The
Development Studio perspective combines the DS-5 C/C++ and DS-5 debugger perspectives to
display commonly used views in a single perspective.

This is the default perspective when Arm Development Studio opens:

Figure 11-4: Arm Development Studio IDE

Project Explorer View
The Project Explorer view allows you to create and import projects.

The Import Project option is only present if no projects are listed in the Project
Explorer view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 176 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-5: Project Explorer view in Arm Development Studio

‘& Project Explorer & +

There are no projects in your workspace.
To add a project:

% Create a project...
a1 Import projects...

In Arm Development Studio, you can now create and import existing uVision® projects:

1. From the toolbar, select File > Import.. to open the Import dialog.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 177 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-6: Import project dialog

n Import [X

Select

Select an import wizard:

type filter text

> = General o~
¥ = Arm Development Studio
@ Examples & Programming Libraries
k3 pVision Project
& C/CHt

@ < Back Next > Finish Cancel

2. Expand the Arm Development Studio drop-down, select uVision Project and click Next.

Debug Control View

The Debug Control view allows you to create new debug connections and connect with existing
configurations.

The Create a Debug Connection option is only shown in the Debug Control view
if no launch configurations exist in Arm Development Studio workspace. Arm
*o Development Studio provides new methods to create hardware, Linux application

and model connections. To read more about these new methods, see:

e Creating a new Hardware Connection
e Creating a new Linux Application Connection

e Creating a new Model Connection

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-7: Import project dialog

% Debug Control & + - B

vy O iRty =

There are no debug connections. To add a debug
connection:

w Create a debug connection...

- ’ 5 i .
% Connect with an existing Config...

To connect to an existing configuration, click the Connect with Existing Config button.

The Connect with Existing Config option is only shown if no launch configurations
exist in the Arm Development Studio workspace.

General Ul differences between DS-5 and Arm Development Studio
There are several minor Ul features in Arm Development Studio that you must be aware of:

e In Arm Development Studio a three line button is used to display menu items instead of the
inverted triangle used in DS-5.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-8: Project Explorer view in Arm Development Studio

i Project Explorer 2 + = 9% 7 EI‘:' 8

There are no projects in your workspace.
To add a project:

Tt Create a project...

L1 Import projects...

e To add more views to a Development Studio perspective in Arm Development Studio, you can
either click +, or select Window > Show View and choose your view.

Figure 11-9: Add new view button in Arm Development Studio

= Outline ® % Breakpoints =

There is no active editor that provides an
outline.

e Use the Builds the selected project (hammer) and Cleans the selected project (broom) buttons
in the Project Explorer view to build and clean the selected project.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 180 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

Figure 11-10: Build and Clean project buttons in Project Explorer view

&1 Project Explorer & +
- &% HelloWorld

Related information
Debug Control view
Perspectives in Arm Development Studio

11.4 Migrate an existing DS-5 project

You can import DS-5 projects and launch configurations (.launch files) into Arm® Development
Studio.

About this task
You can import existing DS-5 projects into Arm Development Studio, but projects and launch
configurations imported into Arm Development Studio are not backward-compatible with DS-5.

Procedure
1. Choose one of these project import methods:

e Click the Import Project option in the Project Explorer view.

The Import Project option only appears if no projects exist.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 181 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-11: Import Project option in the Project Explorer view.

= &

% Project Explorer 2 + B % 7 % 4 =70

There are no projects in your workspace.
To add a project:

[Create a project...

s |mport projects...

e Select File > Import...
2. Select General > Existing Projects into Workspace and click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 182 of 222

Document ID: 101469_2022.2_00_en
Version 2022.2

Arm” Development Studio Getting Started Guide
Migrating from DS-5 to Arm Development Studio

Figure 11-12: Import dialog box

n Import

Select

Create new projects from an archive file or directory.

Select an import wizard:

type filter text
A

v = General
{E Archive File
1% Existing Projects into Workspace
3 File System
[l Preferences v

Finish Cancel

Next >

@ < Back |

3. Select the existing DS-5 project(s) to import.
a) Click Browse... to locate the projects.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 183 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

Figure 11-13: Import dialog browse for root directory

88 Import L] X

Import Projects ‘Z_—L/
-

Select a directory to search for existing Eclipse projects.

(®) Select root directory: | C:\Users\ <user> \ <path to directory> v Browse...
O Select archive file: Browse...
Projects:
Armv8-M _security (C:\Users\ <user> \ <path to project> A Select All
Deselect All
Refresh
v
< >
Options

[_] Search for nested projects
L] Copy projects into workspace
(] Close newly imported projects upon completion

(] Hide projects that already exist in the workspace

Working sets

[] Add project to working sets New...
Working sets: Select...
@ < Back Next > Finish ‘ Cancel

b) Ensure the projects to import are selected and click Finish.

4. Import the projects.
a) Click Select All to import all the existing DS-5 projects or select the project(s) to import.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 184 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

Figure 11-14: Import dialog browse for root directory

n Migrate DS-5 Projects

Selected projects will be migrated to Arm DS projects. Migrated
projects are not compatible with DS-5.

Armv8-M_security

Select All Deselect All
@ oK ’ ‘ Cancel
b) Click OK.
Results

The imported project(s) appear in the Project Explorer view.

Related information
Arm Compiler Licensing Configuration

11.5 CMSIS Packs

Arm® Development Studio includes support for Common Microcontroller Software Interface
Standard (CMSIS) Packs. CMSIS packs offer you a quick and easy way to create, build and debug

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 185 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

embedded software applications for processors that are based on Arm® Cortex®-M class and
Cortex-A5/A7/A9.

CMSIS Packs are a delivery mechanism for software components, device parameters, and board
support. A CMSIS Pack is a file collection that might include:
e Source code, header files, software libraries - for example RTOS, DSP and generic middleware.

e Device parameters, such as the memory layout or debug settings, along with startup code and
Flash programming algorithms.

e Board support, such as drivers, board parameters, and debug connections.
e Documentation and source code templates.

e Example projects that show you how to assemble components into complete working systems.

CMSIS Packs are developed by various silicon and software vendors, covering thousands of
different boards and devices. You can also use them to enable life-cycle management of in-house
software components.

You can use the CMSIS Pack Manager perspective in Arm Development Studio to load and
manage CMSIS Packs. The New Project wizard allows you to easily create a new project based on
selected CMSIS Pack(s).

To create a new Pack-based project, install the Packs needed for your target board/device from the
CMSIS Pack Manager, then use File > New > Project to create a new CMSIS C Project.

If you have already installed some CMSIS Packs, you can redirect the CMSIS Pack
Manager to the existing CMSIS Packs by setting Window > Preferences > CMSIS
Packs > CMSIS Pack root folder to the location of the installation folder.

You can access the CMSIS Pack Manager perspective by navigating to Window > Perspective >
Open Perspective > CMSIS Pack Manager.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 186 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-15: CMSIS Pack Manager perspective

ce - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help

A $Held PTOMPiIAvisvig v ¥ X : v |re Q B *Wet¢
B Devices ® Boards * + EEI%| @ ==0 @packs 2 ~*Examples + BEISSEul® =0 =packProperties ¥ + eelo==o
Search Board Search Pack type filter text
Board Summary A | Pack Action Description A
v % All Boards 438 Boards v Device Specific 689 Packs All Boards selected
@ 32F469IDISCOV STM32F469NIHx > % ABOV.A31G1 xx‘Seriesu ABOV Semiconductor CM0+ Devic
B AC780x Develoj AC78013FDLA > % ABOV.A31G21x_Seri ABOV Semiconductor A31G21x Se
B AC781x Develof AC7811QBGE > % ABOV.A31G22x_Seri ABOV Semiconductor A31G22x D«
@ ADSP-CM419F ADSP-CM419F > % ABOV.A31G31x_Seri ABOV Semiconductor G3 Series Dv
B ADSP-CM419F ADSP-CM419F-BCZ MO > % ABOV.A31G32x_Seri ABOV Semiconductor A31G32x D«
> @ ADSP-CM419F ADSP-CM419F-BCZ M4 % ABOV.A31L12x_Series ABOV Semiconductor CMO+ Devic
B ADuCM3029 EZ ADuCM3029 > % ABOV.A31R71x_Series| ABOV Semiconductor CM0+ Devic
B ADuCMA4050 EZ ADuCM4050 > % ABOV.A33G52x_Seri ABOV Semiconductor A33G52x Se
> B APM32FO03MIM APM32F003F4 > % ABOV.A33M11x_Seri ABOV Semiconductor A33M11x S
B APM32FO03MIM Al > " ABOV.A34M4 1x_Seriey ABOV Semiconductor CM4 Device
B APM32F030MIM APM32F030R8 > % ABOV.AC30M1x64 Se ABOV Semiconductor Motor Solut
> B APM32F103MIM APM32F103VB > % ABOV.AC33Mx064_Se| ABOV Semiconductor Motor Solut
> @ APM32F103VBNAPM32F103VB > " ABOV.AC33Mx128 Se| ABOV Semiconductor Motor Gen-
B Apollo1 EVB (Ve APOLLO512-KBR % Active-Semi.PACS2XX [Install | PAC52XX Family of Power Applica
B Apollo2 EVB (Ve AMAPH 1KK-KBR > % Active-Semi,PAC55XX PAC55XX Family of Power Applica
> @ Apollo3 Blue EV AMA3B1KK-KCR » " AmbigMicro.Apollo_| Ambiq Micro Apollo Series Device
B Apollo3 Blue Pit AMA3B2KK-KBR » % AmiccomSoC_DFP . Install) Amiccom ARM Cortex-MO Device
» B Arduino-Quattr ATSAMGS55)19 % AnalogDevices.ADI-BI: Analog Devices Bluetooth Low Ene
B B-L475E-I0TO1£STM32L475VGTx > " AnalogDevices. ADI- Analog Devices Sensor Drivers anc
B BMSKTOPASM3 TMPM369FDFG > W AnalogDevices.AleW’ Analog Devices WiFi Software
B Bulb Board (v1.” S6E1A12B0A > % AnalogDevices ADUCN Analog Devices ADUCM4x50 Devic
B CMSIS_RTOS2_TSTM32F103RB > % AnalogDevices ADuCl Analog Devices ADuCM4x50 EZ-Ki
B CMSIS_RTOS _TuSTM32F103RB > % AnalogDevices. ADuC Analog Devices ADuCM36x Device
B Colibri-iMX7 ~ MCIMX7D7 > % AnalogDevices. ADuCl Analog Devices ADuCM302x Devic
B Colibri-VF50 MVFS0NN15x0040 A O P Y
L WS Y 7} » r. o e < >
O Console & = Progress + Lil#r@vOv=0o

CMSIS Console
Pack updates are completed
15:08:30: Processing completed

To install the CMSIS pack(s) you must select the device manufacturer and board in the Devices
view, and, in the Packs view, click the appropriate Install icon next to the pack that you want to
install.

o When you create a new project or hardware connection, boards or devices that
have CMSIS packs installed are available as selectable targets. For more information
on creating a hardware connection in Arm Development Studio, see Create a new
Hardware Connection.

Note

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 187 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

Figure 11-16: Installing a CMSIS pack for a device.

n Development Studio Workspace - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help
[#R Oyl R BuFiGrid il vy vyoovy o vt Q iE| @

B Devices * B Boards + = O @Packs ® ¥ Examples +
El%|l® = |Search Pack
Search Device
Pack Action Description A
Device Summary “ |/~ Device Specific 1 Pack A3107MO selected
¥ % All Devices 8424 Devices > % Amiccom.SoC_DFP Amiccom ARM Cortex-MO0 Device Family Pack Sup
> @ ABOV 30 Devices v & Generic 51 Packs Software Packs with generic content not specific tc
> @ Active-Semi 17 Devices > % Alibaba.AliOSThings —: Install | AliOS Things software pack
> Ambiq Micro 10 Devices > % Arm-Packs.PKCS11 mﬁinﬁhL OASIS PKCS #11 Cryptographic Token Interface
¥ ¢ Amiccom 5 Devices > % Arm-Packs.Unity m*ﬁﬁiL Unit Testing for C (especially Embedded Software)
> 4 2.4GHz Serie 2 Devices > % ARM.AMP m Software components for inter processor commu
v “BLE Series 3 Devices > % ARM.CMSIS :ﬁlnﬁn CMSIS (Common Microcontroller Software Interfa
B A3107MO ARM Cortex-M0 1 > % ARM.CMSIS-Driver @ CMSIS Drivers for external devices

B A3117M0 ARM Cortex-MO 1
B A8107M0 ARM Cortex-M0 11

-

B ARM.CMSIS-Driver_Vaw CMSIS-Driver Validation
% ARM.CMSIS-FreeRTOS¥ Install+ | Bundle of FreeRTOS for Cortex-M and Cortex-A

v

¢ Analog Devices 15 Devices > % ARM.CMSIS-RTOS Val[# Install | CMSIS-RTOS Validation

> ¢ APEXMIC 25 Devices > % ARM.mbedClient ¥ Install . ARM mbed Client for Cortex-M devices

> ¢ ARM 64 Devices > % ARM.mbedCrypto MARM mbed Cryptographic library

» ¢ AutoChips 53 Devices o > % ARM.mbedTLS % Install+ | ARM mbed Cryptographic and SSL/TLS library
< & Lesaroicon pa 1 > > % ARM.minar VWL mbed OS Scheduler for Cortex-M devices v
B Console ® = Progress + BB EryIr=1
CMSIS Console
Pack updates are completed ~
10:15:34: Processing completed v

You can copy example CMSIS pack projects into the current workspace by opening the Boards
view and selecting your target board. Then open the Examples view and click the Import icon next

to your preferred example project.

“ Not all CMSIS packs come with examples. Only examples for installed CMSIS packs

are visible by default. Untick Only show examples from installed packs to see
Note examples from packs that you have not yet installed.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 188 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-17: Importing CMSIS Pack example projects

n Development Studio Workspace - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help

R R vEHE BFRBuF IR A iy yO oy v Q im| e

M Devices [B Boards ¢ |+ = B @pPacks [FExamples|? + =0
BB % ®= & Only show examples from installed packs | & @ & o 7| @ =

ARMCMO x H Search Example |

Board Summary Example Action Description

v_% All Boards 391 Boards # CMSIS-RTOS2 Blinky (uVision S{® Import. |CMSIS-RTOS2 Blinky example

v B EWARM Simulai ARMCMO
v % Mounted De 1 Device
B ARMCMO ARM Cortex-M0 10 MHz

> % Compatible |25 Devices || B3 DSP_Lib Bayes example (uVisio m DSP_Lib Bayes example

B ARMCMO ARM Cortex-M0+ 10 MF i3 DSP_Lib Class Marks example (m DSP_Lib Class Marks example
B ARMCMO ARM Cortex-M0+ 10 MH

v H uVision Simulatt ARMCMO
v ‘% Mounted De 1 Device
B ARMCMO ARM Cortex-M0 10 MHZ‘
v % Compatible [25 Devices
B ARMCMO ARM Cortex-M0+ 10 MK
B ARMCMO ARM Cortex-M0+ 10 MK

&2 DSP_Lib Graphic Equalizer exa m DSP_Lib Graphic Equalizer example
3 DSP_Lib Linear Interpolation exm DSP_Lib Linear Interpolation example
&2 DSP_Lib Matrix example (uVisio m DSP_Lib Matrix example

&2 DSP_Lib Signal Convergence ex m DSP_Lib Signal Convergence example
&2 DSP_Lib Sinus/Cosinus exampl '
i DSP_Lib SVM example (uVision |
&2 DSP_Lib Variance example (uVis

DSP_Lib SVM example
DSP_Lib Variance example

The CMSIS Pack Manager shows a 1Vision® icon if the example is a uVision project and requires
conversion.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 189 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-18: Example pVision projects

n Development Studio Workspace - Arm Development Studio IDE = O X
File Edit Navigate Search Project Run Window Help
#RODYEHR B SO BuFiAvid il v v oy v|m Q i@
B Devices B Boards X + “ B @packs T Examples @ + -
BE|%| @ = O Only show examples from installed packs ‘ S Bl @@=
McC)(H Search Example |
Board Summary ~ Example Action Description ~
v All Boards 391 Boards @]Blinky ULp (LPC4330-Xplorer) [Install. Blinky ULINKpro example
v B AC780x Deyelo;AUsopFDLA @|Blinky ULp (MCB1700) & Install, Blinky ULINKpro example
v % Compatible [27 Devtces Blinky ULp (MCB1800) M Blinky ULINKpro example
v % AC7801 27 Devices i Blinky ULp (MCB4300) ¥ Install_ Blinky ULINKpro example

B AC780 ARM Cortex-M0+ 48
B AC780 ARM Cortex-M0+ 48
B AC780 ARM Cortex-M0+ 48
B AC780 ARM Cortex-M0+ 48
v Colibri-iMX7 MCIMX7D7
v % Mounted De 1 Device
B MCIMX7L ARM , 64 KB RAM, 32
v % Compatible [6 Devices
v % i.MX 7Dui4 Devices
B MCIM)ARM , 64 KB RAM, 32
B MCIM)ARM , 64 KB RAM, 32
B MCIM) ARM , 64 KB RAM, 32
B MCIM) ARM , 64 KB RAM, 32
v % iMX 7Sol 2 Devices

B MCIM) ARM _ 64 KB RAM. 32 ¥
< >

B|blinkyExternal (RC10001_DB) ¥ Install . Routine to Blink Dev Board Lights from E:
* Blinky_FreeRTOS (RTK772100-G m CMSIS-RTOS2 FreeRTOS Blinky example
** Blinky_RTX5 (RTK772100—GENMM CMSIS-RTOS2 RTX5 Blinky example
* Blinky_RTX5_AC6 (RTK772100-C % Install . CMSIS-RTOS2 RTX5 Blinky example for A

& BLINKY_RUNNING_LIGHTS (TLE¢ ¥ Install ., Running lights

& BOD (RS13100) | BOD example.

& BOD (RS14100) & Install_, BOD example.

& BSD Client (EFM32GG-DK3750) [Install, Example using BSD sockets to send com

i BSD Client (FRDM-K64F) £ Install_, Example using BSD sockets to send comi

i BSD Client (LPC1788-32 Develo m Example using BSD sockets to send comi

&2 BSD Client (LPC4330-Xplorer) W Example using BSD sockets to send comi

& BSD Client (MCB1700) ¥ Install . Example using BSD sockets to send comi

i3 BSD Client (MCB1800) M Example using BSD sockets to send comi

k3 BSD Client (MCB4300) m Example using BSD sockets to send comi
[——— . . " '

B o i .
>

Related information

Imported Vision project limitations on page 218

11.6 Create a new Hardware Connection

Using the new Hardware Connection wizard in Arm® Development Studio, you can create a
connection to a hardware target for debug activities.

About this task

The Hardware Connection wizard allows you to select target information which comes from either
a CMSIS pack or a configuration database. This topic describes how to connect to a hardware
target using the Hardware Connection wizard, where the target is provided by a CMSIS Pack.

Procedure

1. Open the New Debug Connection dialog:

e Click the New Debug Connection button at the top of the Development Studio

perspective.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 190 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-19: Create new debug connection from Development Studio perspective.

n Development Studio Workspace - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help
NulEidpisviEriCCYy O v |

2. Select the Hardware Connection wizard and click Next.

3
% You can also open the Hardware Connection wizard by selecting File > New >

Hardware Connection.
Note

Figure 11-20: Open Hardware Connection Wizard.

n New Debug Connection [X
Select a wizard ?
Create a debug connection to a hardware target —
Select a wizard to create a new debug connection:
% Hardware Connection
Linux Application Connection
Model Connection
@ < Back Next > Finish Cancel

3. Enter a connection name in the Debug connection name field and click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 191 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

To associate a new hardware connection with an existing project select
Associate debug connection with an existing project and choose a project from
Note the list provided.

Figure 11-21: Enter debug connection name.

n Hardware Connection O X

Debug Connection Jﬁ‘

Enter a connection name and optionally associate with an existing project

Debug connection name: I | ‘

[_] Associate debug connection with an existing project

> HelloWorld (in Testing)

@ < Back \ Next > Finish Cancel

4. Select a hardware target to connect to from the available list and click Finish.

o
% The Location entry of the selected target tells you whether the target support is
provided by a CMSIS Pack or a Configuration Database (configdb).

Note

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 192 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-22: Select hardware target.

n Hardware Connection O X
Target Selection Jﬁ*
Select a target to debug|

[_] Include uninstalled device packs

‘ type filter text

v % STM32F4 Series)
> % STM32F401
> ‘4 STM32F405
v 4 STM32F407
‘4 STM32F4071E
4 STM32F4071G
B STM32F4071GHx
B STM32F407IGTx
‘4 STM32F407VE

v

<

v

> % STM32F407VG
> % STM32F407ZE
> % STM32F407ZG
> % STM32F410 v
Add a new platform...
Device: STM32F407IGHx
Core(s): Cortex-M4
Location: Keil. STM32F4xx_DFP.2.15.0 - Device Pack
The STM32F4 family incorporates high-speed embedded memories and an extensive range of ~

enhanced 1/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AH v

@ < Back Next > | Finish | Cancel

If the selected target uses a CMSIS pack that is not installed, the dialog shown below appears:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-23: Confirm CMSIS pack installation.

n Confirm pack install

,@ The device you have selected requires a pack to be installed before use. Continue installing
) pack?

OK Cancel

Click OK to confirm the pack installation.

When you select the hardware and install any required CMSIS packs, the Arm Development
Studio Edit Configuration dialog launches. This is presented differently depending on the
support for your selected target:

e If the device support for your selected target comes from a configdb, the Edit
Configuration dialog functions the same as the DS-5 Debug Configurations screen, and
looks like this:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 194 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-24: Edit Configuration dialog for configdb targets

n Edit Configuration 15 X
Edit configuration and launch. ﬁ\

Name: | Example Hardware Connection ‘

<= Connection @ Files| % Debugge;\ % 0S Awarenes§| ®- Argument§ = Environmenfln.’n Exporti
Select target

This debug configuration is associated with Arm / Microcontroller Prototyping System (MPS1) Cortex-M4. Select which debug operation to
use.

Currently selected: Bare Metal Debug / Debug Cortex-M4

v Arm

v Microcontroller Prototyping System (MPS1) Cortex-M4
v Bare Metal Debug
Debug Cortex-M4

Target Connection: DSTREAM Family ™

Debug Port: JTAG

Clock Speed: 10MHz v

Arm Debugger will connect to a DSTREAM to debug a bare metal application.

Connections

Bare Metal Debug Connection | USB:002888 Browse...

DTSL Options Edit.. Configure DSTREAM trace or other target options. Using "default” configuration options v

Revert Apply

@ Close

e If the device support for your selected target comes from a CMSIS Pack, the Edit
Configuration dialog looks like this:

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 195 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-25: Edit Configuration dialog for CMSIS pack targets.

n Edit Configuration

Edit configuration and launch. ﬁ.

Launch an Arm Debugger session using a device from a CMSIS pack.

Name: | Example Hardware Connection |

% Connection # Advanced | X Flash“ % OS Awareness

Project Selection

Connection Settings

Connection Type ULINKpro v Platform Information: STM32F4xx_DFP_STM32F407I1GHx

Debug Port JTAG v~

Clock Speed (Hz): 10MHz v

Connection Address | USB:002888]

Browse...
Target Configuration... ‘
Revert ‘ Apply
@ Debug Close

This activity assumes the device support for your selected target comes from a
CMSIS Pack.

5. Setup and connect to a target using the Edit Configuration dialog:
e In the Connection tab:

L

Select a debug adapter from the Conection Type drop-down list.

Select a debug connection method (JTAG or SWD) from the Debug Port drop-down
list.

o

c. Enter a connection address for the debug adapter.

You can browse for the debug adapter by clicking Browse...

o

Click Target Configuration... to set the trace connection options.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

¢ In the Advanced tab:

a. If required, add an image file to download to the target by going to File Settings and
clicking Add an image.

b. Select the required Run Control, Select and Reset, Reset Control and Scripts options.
¢ In the Flash tab:

a. If required, add a flash programming algorithm to the connection by selecting
Programming Algorithms and then Add a flash programming algorithm.

¢ Inthe OS Awareness tab:
a. If required, select an OS from the Select OS awareness drop-down list.
¢ In the Connection tab:

a. Click Apply and then Debug to connect to your selected target and start an Arm
Debugger session.

Results
The debug connection status appears in the Debug Control view and the created launch
configuration appears in the Project Explorer view.

11.7 Connect to new or custom hardware

Arm® Development Studio provides a method to add new hardware target configurations for
connection and debug purposes. This activity describes how to connect to new or custom
hardware in Arm Development Studio.

About this task

In DS-5, hardware configurations are added using a separate perspective, Platform Configuration
Editor. In Arm Development Studio, adding hardware configurations is part of the new Hardware
Connection wizard.

Procedure

1. Open the Hardware Connection wizard:
a) Click the New Debug Connection icon in the Debug Control view, in the View Menu listing
of the Debug Control view, or at the top of the Development Studio perspective.
b) Select Hardware Connection and click Next.

2. Enter a connection name in the Debug Connection name field and click Next.
3. Click Add a new platform....

If not already present, Arm Development Studio automatically creates a
configuration database (ExtensionDB) to store the new hardware configuration.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 197 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-26: Add new platform

n Hardware Connection Ol X

Target Selection Jé‘

Select a target to debug|

[_] Include uninstalled device packs

| type filter text

> (© Recently Used A
> @ Actions Semiconductor

> @ Alpha Project

> @ Amiccom

> @ Applied Micro

> ¢ Arm

> @ Atmel

> @ Avnet

> @ beagleboard.org

5> @ Ranndans Navircac

Add a new platform...

Device:
Core(s):

Location:

Q) » < Back Next > Finish Cancel

4. Select the appropriate debug adapter connection in the Conection Type drop-down list.

. The Debug Adapter Connection view automatically lists any debug adapters
F of the selected type. Unlike DS-5, Arm Development Studio can use ULINK
devices for autodetection purposes. If the debug adapter is not discovered, you
Note can enter the debug adapter connection information in the Connection Address
field.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 198 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-27: Select a debug adapter

n New Platform O X

Debug Adapter Connection

Select or enter the debug adapter to which yohr target is connected.

Connection Type: \ DSTREAM Family v
Debug Port: \ JTAG v
Clock Speed (Hz): ‘ Auto v

Connection Address: ’ TCP:10.32.106.113

When you click next, Arm Development Studio will connect to the debug adapter and autodetect the connected platform.

@ < Back Finish Cancel

5. Click Next to start the hardware target autodetection process.

o A platform configuration is created for the attached target during the
autodetection process. You might be prompted to update the debug adapter
firmware before the autodetection process begins. The debug adapter firmware
update process is the same as it is for DS-5.

Note

6. When the autodetection process completes, choose whether or not to inspect the platform in
the Platform Configuration Editor.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 199 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-28: Select a debug adapter

n New Platform O X

Summary

Autodetect summary

The platform was detected without errors
What would you like to do now?

® Save platform and return to the connection wizard

(O Save platform and inspect in Platform Configuration Editor (this will close the connection wizard)

@ < Back ‘ Finish Cancel

e To continue using the Hardware Connection wizard, select Save platform and return to the
connection wizard.

e To exit the Hardware Connection wizard and enter the Platform Configuration Editor,
select Save platform and inspect in Platform Configuration Editor.

The Arm Development Studio Platform Configuration Editor (PCE)
functions the same as DS-5's PCE.

7. Click Next.

This activity assumes that you have chosen to continue using the Hardware
Connection wizard.

8. Enter platform identification details into the Platform fields and click Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 200 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-29: Enter identification details for the platform

n New Platform Ol X

Platform Information

Use this page to enter identification details for the platform.

Platform Manufacturer: | Imported |

Platform Name: | Imported Platform |

Platform Info URL (Optional): | |

@ Next > ‘ Finish ‘ ‘ Cancel

9. Select the new hardware configuration in the Target Selection view and click Finish.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 201 of 222

Arm” Development Studio Getting Started Guide

Figure 11-30: Select the new hardware configuration

n Hardware Connection

Target Selection
Select a target to debug

Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

s

[_] Include uninstalled device packs

‘ type filter text

> @ CSR
> @ Embedded Artists
> @ Emtrion
> @ Faraday
> @ FDI
> @ Fujitsu
> @ HardKernel
> @ lcytecture
v @ Imported
B Imported Platform
> @ Intel
> @ Intel eASIC
> @ Intel SoC FPGA

'Add a new platform...

Device: Imported Platform

Core(s): Cortex-M4

Location: Configuration Database - ExtensionDB

No description available

©) < Back Next >

Finish Cancel

Results

The new hardware target configuration appears in the Edit Configuration view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 202 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

11.8 Create a new Linux application connection

Arm® Development Studio provides a method to connect to and debug Linux applications using
gdbserver.

About this task

Arm Development Studio adds a new Linux Application Connection wizard to help you create
connections to a Linux application running on a target. This activity describes how to connect to a
Linux application in Arm Development Studio using the Linux Application Connection wizard.

Procedure

1. Open the New Debug Connection dialog:

a) Click the New Debug Connection button at the top of the Development Studio
perspective.

Figure 11-31: Create new debug connection from Development Studio perspective.

n Development Studio Workspace - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help
MuFEREQY viBETiCCY D v

2. Select Linux Application Connection and click Next.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 203 of 222

Arm” Development Studio Getting Started Guide

Figure 11-32: Select Linux Application Connection

Document ID: 101469_2022.2_00_en

Version 2022.2

Migrating from DS-5 to Arm Development Studio

n New Debug Connection [X
Select a wizard l?\
Create a debug connection to a Linux application| —
Select a wizard to create a new debug connection:
Hardware Connection
Linux Application Connection
Model Connection
@ < Back Next > Finish Cancel

3. Enter a connection name in the Debug connection name field and click Finish.

To associate a new Linux application connection with an existing project, select

Note

project.

the provided list.

]o Associate debug connection with an existing project and choose a project from

This activity assumes you have not associated the connection with an existing

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 204 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-33: Enter Linux Application Connection name

- Linux Application Connection Ul X

Debug Connection Jﬁ

Enter a connection name and optionally associate with an existing project

Debug connection name: | Example Linux Application Connection ‘

[] Associate debug connection with an existing project

> HelloWorld (in Testing)

©) < Back Next > Finish Cancel

4. In the Edit Configuration dialog box:
e |f you want to connect to a target with the application and gdbserver already running on it:
a. In the Connection tab, select Connect to already running application.
b. Inthe Connections area, enter the Address and Port details of the target.

c. If you want to terminate the gabserver when disconnecting from the FVP, select
Terminate gdbserver on disconnect.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 205 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-34: Edit Linux app connection details

n Edit Configuration

Edit configuration and launch. ﬁ\.

Name: | Example Linux Connection‘ ‘

= Argumentsy" = Environment“ %] Exporﬂ

<= Connectior{\\ Files| % Debugger| % OS Awareness

Select target

This debug configuration is associated with Linux Application Debug / Application Debug. Select which debug operation to use.
Currently selected: Connections via gdbserver / Connect to already running application

v Application Debug A
» Connections via AArch64 gdbserver
v Connections via gdbserver
Connect to already running application
Download and debug application
Start gdbserver and debug target-resident application

v
Arm Debugger will connect to an already running gdbserver on the target system.
Connections
Address: | 10.1.20.45 |
gdbserver (TCP) | Port: | 5000 |
Use Extended Mode [_] Terminate gdbserver on disconnect
< >
Revert Apply
@ Close |

d. Inthe Files tab, use the Load symbols from file option in the Files panel to specify
symbol files.

e. Inthe Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

f. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.
g. If required, click the Environment tab to create and configure the target environment

variables that are passed to the application when the debug session starts.

e If you want to download your application to the target system and then start a gdbserver
session to debug the application, select Download and debug application.

This connection requires that ssh and gdbserver is available on the target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 206 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

In the Connections area, enter the Address and Port details of the target.
In the Files tab, specify the Target Configuration details:

o Under Application on host to download, select the application to download onto
the target from your host filesystem or workspace.

o Under Target download directory, specify the download directory location.
o Under Target working directory, specify the target working directory.

o If required, use the Load symbols from file option in the Files panel to specify
symbol files.

In the Debugger tab, specify the actions that you want the debugger to perform after it
connects to the target.

If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

e If you want to connect to your target, start gdoserver, and then debug an application
already present on the target, select Start gdbserver and debug target resident application,
and configure the options.

a.

In the Model parameters area, the Enable virtual file system support option maps
directories on the host to a directory on the target. The Virtual File System (VFS)
enables the FVP to run an application and related shared library files from a directory on
the local host.

o The Enable virtual file system support option is selected by default. If you do not
want virtual file system support, deselect this option.

o |If the Enable virtual file system support option is enabled, your current workspace
location is used as the default location. The target sees this location as a writable
mount point.

In the Files tab, specify the location of the Application on target and the Target
working directory. If you need to load symbols, use the Load symbols from file option
in the Files panel.

In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

5. Click Apply to save the configuration settings.
6. Click Debug to connect to the target and start debugging.

Results

A debug connection is created to your chosen Linux application target.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 207 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

11.9 Create a new model connection

Arm® Development Studio provides a method to connect to and debug models using a new Model
Connection wizard. This activity describes how to connect to a model that is shipped with Arm
Development Studio, using the new Model Connection wizard.

Procedure

1. Open the New Debug Connection dialog:
a) Click the New Debug Connection button at the top of the Development Studio
perspective.

Figure 11-35: Create new debug connection from Development Studio perspective.

n Development Studio Workspace - Arm Development Studio IDE

File Edit Navigate Search Project Run Window Help
NufupesviBETICC Y O v

2. Select Model Connection and click Next.
Figure 11-36: Select Model Connection wizard

- New Debug Connection [X

Select a wizard -

Create a debug connection to a model|

Select a wizard to create a new debug connection:

Hardware Connection
Linux Application Connection
Model Connection

©) < Back Next > Finish Cancel

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 208 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2

Migrating from DS-5 to Arm Development Studio

3. Enter a new connection name in the Debug connection name field and click Next.

Figure 11-37: Enter Model Connection name

n Model Connection Ol X

Debug Connection Jé‘

Enter a connection name and optionally associate with an existing project

Debug connection name: | Example Model Connection|

[] Associate debug connection with an existing project

= HelloWorld (in Testing)

@) < Back Next > Finish Cancel

4. Select a model to connect to from the available list or click Add a new model.. to add a new
model configuration to Arm Development Studio.

o
% See Connect to new or custom models for more information about connecting
to new models.

Note

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 209 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-38: Select a target model for the connection

n Model Connection Ol X

Target Selection Ja‘

Select a target to debug

| type filter text |

v @ Arm FVP (Installed with Arm DS) A
B Base A32x1
B Base A35x1
B Base A53x1
B Base A55x1
B Base A55x4 A75x2
B Base A55x4 A76x2
B Base A57x1 v

Add a new model...
Device: Base A32x1
Core(s): Cortex-A32

Location: Configuration Database - configdb

@ < Back Next > Finish Cancel
5. Click Finish.
Results

The Edit Configuration dialog opens.

functions as the DS-5 Debug Configurations dialog. The main difference is that the
Arm Development Studio Edit Configuration dialog only shows the configuration
details for the selected model under the Select target field in the Connection tab.

*o The Arm Development Studio Edit Configuration dialog provides the same

Note

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 210 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-39: Edit Configuration dialog

B edit Configuration Od X

Edit configuration and launch. ﬁ.

Name: | txample Model Connection |
'+ Connection Files| % Debugger % OS Awareness| % Arguments ™ Environment |t ExPorﬂ |
Select target ~
This debug configuration is associated with Arm FVP (Installed with Arm DS) / Base_A32x1. Select which debug operation to use.
Currently selected: Bare Metal Debug / Cortex-A32
v Arm FVP (Installed with Arm DS)
v Base_A32x1
v Bare Metal Debug
Cortex-A32
> Linux Kernel Debug
Arm Debugger will connect to an FVP to debug a bare metal application.
Connections
(® Launch a new model Model parameters
Bare Metal Debug
(O Connect to an already running model Connection address 127.0.0.1:7100
DTSL Options Edit.. Configure trace or other target options. Using “default” configuration options
v
Revert Apply

@ Close

Next steps
Make any necessary changes to the debug configuration in the Edit Configuration dialog.

Related information

Debug Configurations - Connection tab
Debug Configurations - Files tab

Debug Configurations - Debugger tab
Debug Configurations - OS Awareness tab
Debug Configurations - Arguments tab
Debug Configurations - Environment tab
Debug Configurations - Export tab

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 211 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

11.10 Connect to new or custom models

Arm® Development Studio provides a method to add new model configurations for connection
and debug purposes. This activity describes how to add model configurations to the configuration
database using the new Model Connection wizard.

About this task
In addition to the Model Configuration wizard, you can add Arm Development Studio model
configurations to the configuration database using the new Model Connection wizard.

Procedure

1. Open the Model Connection wizard:

a) Select File > New > Model Connection.
2. Enter a connection name in the Debug connection name field and click Next.
3. Click Add a new model...

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 212 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469_2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-40: Add a new model in the Model Connection wizard.

n Model Connection O X

Target Selection Ja\

® No target selected.

type filter text ‘

» (O Recently Used
> @ Arm FVP
¢ Arm FVP (Installed with Arm DS)
@ Arm SubSystem FVP
¢ Intel

||Add a new model...Il

Device:
Core(s):

Location:

No description available

@ < Back \ Next > Einish Cancel

4. Select a model interface for connecting to your model. You have two interface options -
Component Architecture Debug Interface (CADI) or Iris.

CADI model interface:
e To launch and connect to a specific model from your local file system using CADI:
a. Select the Launch and connect to a specific model option and click Next.

b. In the Model Selection from File System dialog box, click File to browse for a
model and select it.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 213 of 222

Arm” Development Studio Getting Started Guide

Figure 11-41: Select model from file system

B Hew Model

Document ID: 101469_2022.2_00_en

Version 2022.2

Migrating from DS-5 to Arm Development Studio

Model Selection from File System

Select the madel from file system

Model Path :

I

® ’ < Back

Mext =

Finish

Cancel

c. Click Open, and then click Finish.

To connect to a model running on the local host:

a. Select the Browse for model running on local host option and click Next.

b. Select the model you require from the listed models.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-42: Browse for model running on local host

B3 rew Model

Model Running on Local Host

Browse for model running on local host

eneratorFyYP_Bas i (port=7000

Model: | Systern GeneratorFyYP_Base_Cortex A7 (port=7000)

@:J < Back Mext = Cancel

c. Click Finish and connect to the model.
Iris model interface:
e To launch and connect to a specific model from your local file system using Iris:
a. Select the Launch and connect to a specific model option and click Next.

b. In the Model Selection from File System dialog box, click File to browse for a
model and select it.

c. Click Open, and then click Finish.

e To connect to a model running on the local host:

To connect to models running on the local host, you must launch the
model with the --iris-server switch before connecting to it.

a. Select the Browse for model running on local host option and click Next.

b. Select the model you require from the listed models.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 215 of 222

Arm” Development Studio Getting Started Guide Document ID: 101469 _2022.2_00_en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-43: Browse for model running on local host

B Hew Model

Model Running on Local Host

Browse for model running on local host

Maodel {lrns)

FWP_Base Cortex &76x1 (port=7100)

Model: | FWP_Base_Cortex ATEx1 (port=71000

@ < Back Mext = Cancel ‘

c. Click Finish and connect to the model.

e To connect to a model using its address and port number, running either on the local
or a remote host:

To connect to models running on the local host, you must first launch
the model with the --iris-server switch before connecting to it. To
connect to models running on a remote host, you must first launch the
model with the --iris-server --iris-allow-remote Switches.

a. Select the Connect to model running on either local or remote host option and
click Next.

b. Enter the connection address and port number of the model.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 216 of 222

Arm” Development Studio Getting Started Guide

Document ID: 101469_2022.2_00_en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

Figure 11-44: Connect to model running on either local or remote host

B3 rew Model

Connect to a model

Enter the connection details for the model

Server Address : | 127.0.0.1

Port Mumber: | 7100

'C:J % Back Mext = Cancel
c. Click Finish.

The selected model is imported and the *.mdf created. The Model Configuration Editor opens
and loads the imported model file. You can view the configuration database and model in the

Project Explorer.

5. (Optional) Rename the Manufacturer Name and Platform Name, and if necessary, use the
Model Configuration Editor to complete the model configuration.

If you do not enter a Manufacturer Name, the platform is listed under Imported

in the Debug Configurations dialog box.

Next steps

e Make any changes to the model in the Model Configuration Editor. To save the changes to the

model, click Save.

o Toimport and rebuild the Development Studio configuration database, click Import.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Migrating from DS-5 to Arm Development Studio

e Click Debug to open the Debug Configurations dialog box to create, manage, and run
configurations for this target.

Related information
Create a new model configuration

11.11 Imported pVision project limitations

If you want to import uVision® projects into Arm® Development Studio, there are some limitations
to be aware of.

The limitations are as follows:

e WVision project settings which affect target debug are not migrated to Arm Development Studio
debug configurations, but are limited to the project build.

e WVision projects can have multiple project targets with variations in the Run-Time Environment
(RTE) setting. In Arm Development Studio, a project:

o |s limited to exactly one RTE configuration.

o Does not support Eclipse's C/C++ Development Tooling (CDT) concept of project
'‘configurations..

Therefore, each pVision project target is imported as an individual Arm Development Studio
project with its own copy of the project files.

* When you convert and import a uVision project, a copy of the project files are created and
stored in your workspace directory.

When you are preparing a LVision project for import into Arm Development Studio, you must
ensure that all the files and folders that are specified in the project, are either in the same folder
as the project file, or are in a subdirectory structure. If there are any files that are outside of
the project folder, you must copy these into the project folder, and then manually resolve any
relative dependencies.

e Vision Multi-Project-Workspace files (*.uvmpw) are not supported. Instead, you must import
the projects included in the workspace individually, and set up project interdependencies
manually.

e You cannot directly import uVision Multi-Project-Workspace (*.uvmpw) into Arm Development
Studio. To use projects contained in .uvmpw files, you must import each project individually and
manually configure their dependencies.

e You can only import pVision projects that specify fixed compiler versions. These compiler
toolchains must also be installed in Arm Development Studio. This is because, in Arm
Development Studio, the compiler version is configured per project target.

e User commands in pVision projects are not converted into the corresponding Arm
Development Studio Build Steps. To check or edit the converted Build Steps, right-click the
project, and select Properties > C/C++ Build > Settings > Build Steps.

e You must translate Vision Key Sequence for Tool Parameters to their corresponding variables
in Arm Development Studio.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 218 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en

Version 2022.2
Migrating from DS-5 to Arm Development Studio

The EIfDWT utility is not included in the Arm Development Studio installation. You must
manually set up Signature Creator for NXP Cortex-M Devices (EIfDWT) as an Arm Development
Studio post-build step. To set up a post-build step, right-click the project and select Properties
> C/C++ Build > Settings > Build Steps.

The fcarm utility is not included in the Arm Development Studio installation.

In Vision source groups, software components and individual files can have specific
assignments to memory regions which are evaluated when the tools generate the linker script.
This feature is not available in Arm Development Studio, so you must manually edit the linker
script file.

11.12 Other differences between DS-5 and Arm

Development Studio

There are other small differences between DS-5 and Arm® Development Studio.

The differences are:

The Linaro GCC 4.9-2014.04 [arm-linux-gnueabihf] compiler is not provided with Arm
Development Studio. To use GCC (Linux or bare-metal) in Arm Development Studio, you can
download the version you require from Linaro or Arm Developer, then add it as a toolchain (see
Register a compiler toolchain)

In Arm Development Studio, the IDE executable in the nin directory of the installation is named
armds_ide. In DS-5, the executable is named eclipse.

In Arm Development Studio, the default Run control option is connect only in the Edit
Configuration view's Debugger tab. In DS-5, the default Run control option is Debug from
symbol set to main.

In Arm Development Studio, the command-line debugger is named armdbg. In DS-5, the
command-line debugger is named debugger.

In Arm Development Studio, the Platform Configuration Editor (PCE) is integrated into the
new Connection wizard (see Connect to new or custom hardware).

In Arm Development Studio, you must select Properties > C/C++ Build > Environment >
Append variables to native environment for every project. If you select Replace native
environment with specified one, the project might not build successfully.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 219 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Terminology and Shortcuts

Appendix A Terminology and Shortcuts

Supplementary information for new users of Arm® Development Studio.

A.1 Terminology

Arm® Development Studio documentation uses a range of terms. These are listed below.

Device
A component on a target that contains the application that you want to debug.
Dialog box

A small page that contains tabs, panels, and editable fields which prompt you to enter
information.

Editor

A view that enables you to view and modify the content of a file, for example source files.
The tabs in the editor area show files that are currently open for editing.

Flash Program
A term used to describe the storing of data on a flash device.
IDE

The Integrated Development Environment. A window that contains perspectives, menus,
and toolbars. This is the main development environment where you can manage individual
projects, associated sub-folders, and source files. Each window is linked to one workspace.

Panel
A small area in a dialog box or tab to group editable fields.
Perspective

Perspectives define the layout of your selected views and editors in Eclipse. They also have
their own associated menus and toolbars.

Project

A group of related files and folders in Eclipse.
Resource

A generic term used to describe a project, file, folder, or a combination of these.
Send To

A term used to describe sending a file to a target.

Tab
A small overlay page that contains panels and editable fields within a dialog box to group
related information. Clicking on a tab brings it to the top.

Target

A development platform on a printed circuit board or a software model that emulates the
expected behavior of Arm hardware.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 220 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Terminology and Shortcuts

View
Views provide related information, for a specific function, corresponding to the active file in
the editor. They also have their own associated menus and toolbars.

Wizard

A group of dialog boxes to guide you through common tasks. For example, creating new files
and projects.

Workspace
An area on your file system used to store files and folders related to your projects.

A.2 Keyboard shortcuts

A list of the most common keyboard shortcuts available for use with Arm® Development Studio.

F3
Click an assembly instruction and press F3 to see help information about the instruction.
F10

Press F10 to access the main menu. You can then navigate the main menu using the arrow
keys.

Alt+F4

Exit Arm Development Studio.
Alt+Left arrow

Go back in navigation history.
Alt+Right arrow

Go forward in navigation history.
Ctrl+Semicolon

In the Arm assembler editor, add comment markers to a selected block of code in the active
file.

Ctrl+Home
Move the editor focus to the beginning of the code.
Ctrl+End
Move the editor focus to the end of the code.
Ctrl+B
Build all projects in the workspace that have changed since the last build.
Ctrl+F
Open the Find or Find/Replace dialog box to search through the code in the active editor.
Some editors are read-only and therefore disable this functionality.
Ctrl+F4
Close the active file in the editor view.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 221 of 222

Arm® Development Studio Getting Started Guide Document ID: 101469 _2022.2 00 _en
Version 2022.2
Terminology and Shortcuts

Ctrl+F6

Cycle through open files in the editor view.
Ctrl+F7

Cycle through available views.
Ctrl+F8

Cycle through available perspectives.
Ctrl+F10

Use with the arrow keys to access the drop-down menu.
Ctri+L

Move to a specified line in the active file.
Ctrl+Q

Move to the last edited position in the active file.
Ctrl+Space

Auto-complete selected functions in editors.
Shift+F10

Use with the arrow keys to access the context menu.
Ctrl+Shift+F

Activate the code style settings in the Preferences dialog box and apply them to the active

file.
Ctrl+Shift+L

Open a small page with a list of all keyboard shortcuts.
Ctrl+Shift+R

Open the Open resource dialog box.
Ctrl+Shift+T

Open the Open Type dialog box.
Ctrl+Shift+/

In the C/C++ editor, add comment markers to the start and end of a selected block of code
in the active file.

Copyright © 2018-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 222 of 222

